
Advanced Game Design

Paul Craven

Apr 11, 2022

RESOURCES:

1 Camel Code Review 1

2 Blender to Unity 21

3 Mixamo to Unity 25

4 Texture Objects 39

5 2D Unity Part 1 51

6 2D Unity Part 2 57

7 2D Animation 63

8 2D Shooting 71

9 Adding a Bloom Effect 77

10 2D Particle System 85

11 2D Attacks 89

12 Camel in C# 93

13 Roll-a-Ball 95

14 Custom Roll-a-Ball 97

15 Team 3D Game Work 99

16 2D Assignment 1 103

17 2D Assignment 2 107

18 2D Animation Assignment 109

19 2D Final Assignment 111

i

ii

CHAPTER

ONE

CAMEL CODE REVIEW

Here are examples of the “Camel” game. Our goal here is to do code reviews on this code.

Before the code review, think about:

1. First, list what are the goals of the code review.

2. Look for common mistakes. Keep a to-do list.

1. Can a person drink more water than is in the canteen?

2. Do we mis-calculate how far back the people are?

3. Can the chasing people skip past the person and miss seeing them?

4. Can we both win and lose the game at the same time? Or otherwise get conflicting messages?

3. Quantify effectiveness of your code review. (Bugs found, changes made, etc.)

4. Code reviews often include work on unit-tests. We aren’t doing that here but keep it in mind.

5. Code reviews should be less than 400 lines and 60 minutes.

1.1 Camel Version 1

1 using System;
2

3 namespace CamelGame
4 {
5 class Program
6 {
7 private static void Choices()
8 {
9 Console.WriteLine(" ");

10 Console.WriteLine("A. Drink from your canteen.");
11 Console.WriteLine("B. Ahead moderate speed.");
12 Console.WriteLine("C. Ahead full speed.");
13 Console.WriteLine("D. Stop and rest.");
14 Console.WriteLine("E. Status check.");
15 Console.WriteLine("Q. Quit.");
16 Console.WriteLine(" ");
17 }
18 private static void DistanceTraveled(int camelMovement)
19 {

(continues on next page)

1

Advanced Game Design

(continued from previous page)

20 Console.WriteLine(" ");
21 Console.WriteLine("You traveled " + camelMovement + " miles.");
22 }
23 private static void ChoiceA(ref int thirst, ref int drinks)
24 {
25 if (drinks > 0)
26 {
27 drinks -= 1;
28 thirst = 0;
29 }
30 else Console.WriteLine("You are out of water.");
31 }
32 private static void ChoiceB(ref int milesTraveled, ref int thirst, ref␣

→˓int camelTiredness, ref int drinks, ref int nativeDistance, Random random)
33 {
34 int camelMovement = random.Next(5, 12);
35 int nativeMovement = random.Next(7, 14);
36 milesTraveled += camelMovement;
37 thirst += 1;
38 camelTiredness += 1;
39 nativeDistance += nativeMovement;
40 int oasisFound = random.Next(1, 20);
41 if (oasisFound == 1)
42 {
43 Oasis(out thirst, out camelTiredness, out drinks);
44 }
45 DistanceTraveled(camelMovement);
46 }
47 private static void ChoiceC(ref int milesTraveled, ref int thirst, ref␣

→˓int camelTiredness, ref int drinks, ref int nativeDistance, Random random)
48 {
49 int camelMovement = random.Next(10, 20);
50 int nativeMovement = random.Next(7, 14);
51 int addTiredness = random.Next(1, 3);
52 milesTraveled += camelMovement;
53 thirst += 1;
54 camelTiredness += addTiredness;
55 nativeDistance += nativeMovement;
56 int oasisFound = random.Next(1, 20);
57 if (oasisFound == 1)
58 {
59 Oasis(out thirst, out camelTiredness, out drinks);
60 }
61 DistanceTraveled(camelMovement);
62 }
63 private static void ChoiceD(ref int nativeDistance, ref int␣

→˓camelTiredness, Random random)
64 {
65 Console.WriteLine("The Camel is happy");
66 int nativeMovement = random.Next(7, 14);
67 nativeDistance += nativeMovement;
68 camelTiredness = 0;

(continues on next page)

2 Chapter 1. Camel Code Review

Advanced Game Design

(continued from previous page)

69 }
70 private static void ChoiceE(int milesTraveled, int drinks, int␣

→˓nativeDistance)
71 {
72 Console.WriteLine("Miles traveled: " + milesTraveled);
73 Console.WriteLine("Drinks in canteen: " + drinks);
74 Console.WriteLine("The natives are " + (milesTraveled -␣

→˓nativeDistance) + " miles behind you.");
75 }
76 private static void Oasis(out int thirst, out int camelTiredness, out␣

→˓int drinks)
77 {
78 Console.WriteLine("You found an oasis!");
79 Console.WriteLine("The camel is rested and your thirst and␣

→˓canteen are replenished.");
80 thirst = 0;
81 drinks = 3;
82 camelTiredness = 0;
83 }
84 static void Main(string[] args)
85 {
86 int milesTraveled = 0;
87 int thirst = 0;
88 int camelTiredness = 0;
89 int drinks = 3;
90 int nativeDistance = -20;
91 string choice;
92 string playAgain;
93 bool done = false;
94 Random random = new Random();
95

96 Console.WriteLine("Welcome to Camel!");
97 Console.WriteLine("You have stolen a camel to make your way␣

→˓across the great Mobi desert.");
98 Console.WriteLine("The natives want their camel back and are␣

→˓chasing you down! Survive your desert trek and out run the natives.");
99

100 while (!done)
101 {
102 Choices();
103 Console.Write("Enter Choice: ");
104 choice = Console.ReadLine();
105 if (string.Equals("Q", choice.ToUpper()))
106 {
107 done = true;
108 }
109

110 else if (string.Equals("A", choice.ToUpper()))
111 {
112 ChoiceA(ref thirst, ref drinks);
113 }
114

(continues on next page)

1.1. Camel Version 1 3

Advanced Game Design

(continued from previous page)

115 else if (string.Equals("B", choice.ToUpper()))
116 {
117 ChoiceB(ref milesTraveled, ref thirst, ref␣

→˓camelTiredness, ref drinks, ref nativeDistance, random);
118 }
119

120 else if (string.Equals("C", choice.ToUpper()))
121 {
122 ChoiceC(ref milesTraveled, ref thirst, ref␣

→˓camelTiredness, ref drinks, ref nativeDistance, random);
123 }
124

125 else if (string.Equals("D", choice.ToUpper()))
126 {
127 ChoiceD(ref nativeDistance, ref camelTiredness,␣

→˓random);
128 }
129

130 else if (string.Equals("E", choice.ToUpper()))
131 {
132 ChoiceE(milesTraveled, drinks, nativeDistance);
133 }
134

135 if (thirst > 6)
136 {
137 Console.WriteLine("You died of thirst.");
138 done = true;
139 }
140

141 else if (thirst > 4)
142 {
143 Console.WriteLine("You are thirsty.");
144 }
145

146 if (camelTiredness > 8 & !done)
147 {
148 Console.WriteLine("Your camel is dead.");
149 done = true;
150 }
151

152 else if (camelTiredness > 5)
153 {
154 Console.WriteLine("Your camel is getting tired.

→˓");
155 }
156

157 if (milesTraveled - nativeDistance <= 0 & !done)
158 {
159 Console.WriteLine("The natives caught you!");
160 done = true;
161 }
162

(continues on next page)

4 Chapter 1. Camel Code Review

Advanced Game Design

(continued from previous page)

163 else if (milesTraveled - nativeDistance <= 15)
164 {
165 Console.WriteLine("The natives are getting close!

→˓");
166 }
167

168 if (milesTraveled >= 200 & !done)
169 {
170 Console.WriteLine("You escaped the natives!");
171 done = true;
172 }
173

174 if (done)
175 {
176 Console.Write("Play Again? (Y/N) ");
177 playAgain = Console.ReadLine();
178 if (string.Equals("Y", playAgain.ToUpper()))
179 {
180 done = false;
181 }
182 else if (string.Equals("N", playAgain.ToUpper()))
183 {
184 Console.WriteLine("Thanks for playing!");
185 }
186 }
187 }
188 }
189 }
190 }

1.2 Camel Version 2

1 using System;
2 using System.Collections;
3 using System.Collections.Generic;
4

5 namespace Camel
6 {
7 class Program
8 {
9 // Initialize variables for use throughout the entire program

10 static int playerPosition;
11 static int hadesPosition;
12 static int gameLength;
13 static bool done;
14 static int energy;
15 static int maxEnergy = 20;
16 static int drachmas;
17 static int maxShops = 4;
18 static int hadesMovement;

(continues on next page)

1.2. Camel Version 2 5

Advanced Game Design

(continued from previous page)

19 static int turnCounter;
20 static int positionDifference;
21 static string distanceStatement;
22 static string energyStatement;
23 static int[] shops;
24 static int movementModifier;
25 static int hadesMovementModifier;
26 static Dictionary<string, int> shopItems;
27 static int speedBoostTurns;
28 static int maxSpeedBoost = 5;
29 static int roadBlockTurns;
30 static int maxRoadBlock = 5;
31 static bool purchaseMade;
32 static bool moved;
33 static bool exitShop;
34 static string lineBreak = "--

→˓-------------------------------";
35

36 static void Main(string[] args)
37 {
38 // --- SETUP FUNCTIONS FOR GAME USE ---

→˓--------------------------------------
39 void InitializeGame()
40 {
41 // Initialize game variables and general setup.
42 hadesPosition = 0;
43 // Set player position relative to Hades at the beginning of the game.
44 playerPosition = SetPlayerPosition(hadesPosition);
45 // Randomize the length that the player must travel.
46 SetGameLength();
47 // Get our list of shop locations.
48 shops = DisperseShops();
49 energy = maxEnergy;
50 turnCounter = 0;
51 // This is used to keep our game running until the player wins or is␣

→˓caught by Hades.
52 done = false;
53 hadesMovementModifier = 0;
54 movementModifier = 0;
55 shopItems = new Dictionary<string, int>();
56 InitializeShop();
57

58 string gameStartTutorial;
59 gameStartTutorial = "You are in ancient Greece and have just completed␣

→˓an undercover recon mission for Zeus. Hades has discovered " +
60 "what you have done and is now chasing you while you make your way␣

→˓back to Olympus! Get back to Olympus before Hades makes you pay " +
61 "the price!";
62

63 Console.WriteLine(gameStartTutorial);
64 Console.WriteLine(lineBreak);
65 }

(continues on next page)

6 Chapter 1. Camel Code Review

Advanced Game Design

(continued from previous page)

66

67 // This function will set the Game's length every time it is started up.
68 int SetGameLength()
69 {
70 gameLength = RandomNumber(45, 60);
71 return gameLength;
72 }
73

74 // Function for generating random numbers within the game.
75 int RandomNumber(int min, int max)
76 {
77 Random random = new Random();
78 return random.Next(min, max);
79 }
80

81 // This function sets the players initial starting position with respect to␣
→˓the enemy's position.

82 int SetPlayerPosition(int hadesLocation)
83 {
84 int playerLocation;
85 playerLocation = hadesLocation + RandomNumber(1, 6);
86 return playerLocation;
87 }
88

89 int SetHadesPosition()
90 {
91 hadesMovement = RandomNumber(2, 5);
92 if (hadesMovement - hadesMovementModifier < 0)
93 {
94 hadesMovement = 0;
95 }
96 else
97 {
98 hadesMovement = hadesMovement - hadesMovementModifier;
99 }

100 hadesPosition += hadesMovement;
101 return hadesPosition;
102 }
103

104 int[] DisperseShops()
105 {
106 int previousShop;
107 int interval;
108 int[] shopLocations = new int[maxShops];
109

110 previousShop = 0;
111

112 for (int i = 0; i < maxShops; i++)
113 {
114 interval = RandomNumber(4, 10);
115 if (previousShop + 4 < gameLength && (previousShop + interval) <␣

→˓gameLength)

(continues on next page)

1.2. Camel Version 2 7

Advanced Game Design

(continued from previous page)

116 {
117 shopLocations[i] = previousShop + interval;
118 previousShop = shopLocations[i];
119 }
120 }
121

122 return shopLocations;
123 }
124

125 string GetEnergyStatement(int energy)
126 {
127 if (energy <= 3)
128 {
129 return "You are exhausted...";
130 }
131 else if (energy > 3 && energy <= 10)
132 {
133 return "You are starting to get tired...";
134 }
135 else if (energy > 10 && energy <= 15)
136 {
137 return "You still feel moderately energetic.";
138 }
139 else
140 {
141 return "You are pulsing with energy!";
142 }
143 }
144

145 void CheckForAncientRuins()
146 {
147 int random;
148 int drachmasGained;
149 random = RandomNumber(0, 26);
150 drachmasGained = RandomNumber(5, 15);
151 if (random == 12)
152 {
153 Console.WriteLine("You have stumbled upon some ancient ruins. You␣

→˓have found " + drachmasGained + " drachmas and your energy has been restored!");
154 drachmas += drachmasGained;
155 energy = maxEnergy;
156 }
157 }
158

159 void Purchase(string itemName, int price)
160 {
161 string shopStatement = "";
162

163 if (itemName.Equals("Energy Drink") && drachmas >= price)
164 {
165 energy = maxEnergy;
166 shopStatement = "Your energy has been replenished!";

(continues on next page)

8 Chapter 1. Camel Code Review

Advanced Game Design

(continued from previous page)

167 shopItems.Remove("Energy Drink");
168 drachmas -= price;
169 purchaseMade = true;
170 }
171 else if (itemName.Equals("Speed Boost") && drachmas >= price)
172 {
173 movementModifier = RandomNumber(2, 4);
174 speedBoostTurns = maxSpeedBoost;
175

176 shopStatement = "Your movement speed has been boosted by " +␣
→˓movementModifier +

177 " for " + speedBoostTurns + " turns!";
178 shopItems.Remove("Speed Boost");
179 drachmas -= price;
180 purchaseMade = true;
181 }
182 else if (itemName.Equals("Road Block") && drachmas >= price)
183 {
184 hadesMovementModifier = RandomNumber(1, 3);
185 roadBlockTurns = maxRoadBlock;
186 shopStatement = "You have injured Hades and have restricted his␣

→˓movement by " +
187 hadesMovementModifier + " for " + roadBlockTurns + " turns!";
188 shopItems.Remove("Road Block");
189 drachmas -= price;
190 purchaseMade = true;
191 }
192 else if (drachmas < price)
193 {
194 Console.WriteLine("You cannot afford that!");
195 purchaseMade = false;
196 }
197 else
198 {
199 Console.WriteLine("You have decided to leave.");
200 exitShop = true;
201 }
202 if (purchaseMade)
203 {
204 Console.WriteLine("You have purchased one " + itemName);
205 Console.WriteLine(shopStatement);
206 }
207 }
208

209 void OpenShop()
210 {
211 string shopStatement = "You have stumbled upon a traveling merchant!";
212 int i = 1;
213 Console.WriteLine(shopStatement);
214 Dictionary<int, string> itemList = new Dictionary<int, string>();
215

216 foreach (KeyValuePair<string, int> item in shopItems)

(continues on next page)

1.2. Camel Version 2 9

Advanced Game Design

(continued from previous page)

217 {
218 string displayItem = i + ". " + item.Key + " -------- " + item.Value;
219 Console.WriteLine(displayItem);
220 itemList.Add(i, item.Key);
221 i += 1;
222 }
223

224 string leave = i + ". Leave";
225 itemList.Add(i, "Leave");
226 string playerDrachmas = "Your current held drachmas: " + drachmas;
227 string buy = "Would you like to make a purchase?";
228 Console.WriteLine(leave);
229 Console.WriteLine(playerDrachmas);
230 Console.WriteLine(buy);
231

232 purchaseMade = false;
233 exitShop = false;
234

235 while (!purchaseMade && !exitShop)
236 {
237 string userInput = Console.ReadLine();
238

239 try
240 {
241 string itemName;
242 int price;
243

244 itemList.TryGetValue(Convert.ToInt32(userInput), out itemName);
245 shopItems.TryGetValue(itemName, out price);
246 Purchase(itemName, price);
247 exitShop = true;
248 }
249 catch
250 {
251 Console.WriteLine("Please enter a valid number.");
252 }
253 }
254 }
255

256 void InitializeShop()
257 {
258 shopItems.Add("Energy Drink", 10);
259 shopItems.Add("Speed Boost", 25);
260 shopItems.Add("Road Block", 15);
261 }
262

263 void IncrementItemDuration()
264 {
265 if (speedBoostTurns > 0)
266 {
267 speedBoostTurns -= 1;
268 }

(continues on next page)

10 Chapter 1. Camel Code Review

Advanced Game Design

(continued from previous page)

269 if (roadBlockTurns > 0)
270 {
271 roadBlockTurns -= 1;
272 }
273 }
274

275 void GetUserDecision()
276 {
277 string slow;
278 string medium;
279 string fast;
280 string rest;
281 string input;
282 string status;
283 string quit;
284 bool decided;
285 int drachmasGained = 0;
286

287 decided = false;
288

289 slow = "1. Slow and Steady...";
290 medium = "2. Keep a moderate pace.";
291 fast = "3. Full steam ahead!!!";
292 rest = "4. Stop and take a rest...";
293 status = "5. Journey Status.";
294 quit = "6. Quit Game.";
295

296 if (positionDifference >= 10)
297 {
298 Console.WriteLine("Hades is very far away...");
299 }
300 else if (positionDifference >= 6)
301 {
302 Console.WriteLine("Hades is getting closer.");
303 }
304 else
305 {
306 Console.WriteLine("Hades is right on your tail!!!");
307 }
308 Console.WriteLine();
309 Console.WriteLine(slow + "\n" + medium + "\n" + fast + "\n" + rest + "\n

→˓" + status + "\n" + quit);
310 Console.WriteLine("What would you like to do?");
311

312 while (!decided)
313 {
314 // Get user input and set up if statements to evaluate user input.
315 input = Console.ReadLine();
316

317 int distanceTraveled;
318 int energyUsed;
319

(continues on next page)

1.2. Camel Version 2 11

Advanced Game Design

(continued from previous page)

320 // If player has decided to take it slow...
321 if (input.Equals("1"))
322 {
323 distanceTraveled = (RandomNumber(1, 3) + movementModifier);
324 energyUsed = RandomNumber(-3, -1);
325 playerPosition += distanceTraveled;
326 distanceStatement = "You have decided to play it safe, and have␣

→˓traveled " + distanceTraveled + " miles. ";
327 energyStatement = GetEnergyStatement(energy);
328 drachmasGained = RandomNumber(1, 3);
329

330 // Make sure we are not surpassing the maximum energy cap.
331 if (energy - energyUsed < maxEnergy - energyUsed)
332 {
333 energy -= energyUsed;
334 }
335 else
336 {
337 energy = maxEnergy;
338 }
339

340 IncrementItemDuration();
341

342 decided = true;
343 }
344 // If player has decided on medium travel speed...
345 else if (input.Equals("2") && energy >= 4)
346 {
347 distanceTraveled = (RandomNumber(3, 5) + movementModifier);
348 energyUsed = RandomNumber(2, 4);
349 playerPosition += distanceTraveled;
350 energy -= energyUsed;
351 distanceStatement = "You have decided to move at a steady pace,␣

→˓and have traveled " + distanceTraveled + " miles. ";
352 energyStatement = GetEnergyStatement(energy);
353 drachmasGained = RandomNumber(2, 4);
354 drachmas += drachmasGained;
355 IncrementItemDuration();
356

357 decided = true;
358 }
359 // If player has decided to go full speed...
360 else if (input.Equals("3") && energy >= 8)
361 {
362 distanceTraveled = (RandomNumber(4, 8) + movementModifier);
363 energyUsed = RandomNumber(6, 8);
364 drachmasGained =
365 playerPosition += distanceTraveled;
366 energy -= energyUsed;
367 distanceStatement = "You have decided to travel at full speed,␣

→˓and have traveled " + distanceTraveled + " miles. ";
368 energyStatement = GetEnergyStatement(energy);

(continues on next page)

12 Chapter 1. Camel Code Review

Advanced Game Design

(continued from previous page)

369 drachmasGained = RandomNumber(3, 6);
370 IncrementItemDuration();
371

372 decided = true;
373 }
374 // If player has decided to rest...
375 else if (input.Equals("4"))
376 {
377 energyUsed = RandomNumber(-10, -6);
378 energy -= energyUsed;
379 distanceStatement = "You have decided to take a rest and recover␣

→˓your energy. ";
380 energyStatement = GetEnergyStatement(energy);
381 IncrementItemDuration();
382

383 decided = true;
384 }
385 else if (input.Equals("5"))
386 {
387 Console.WriteLine("----------------- STATUS REPORT --------------

→˓---\nEnergy: " + GetEnergyStatement(energy) +
388 "\nDrachmas: " + drachmas + "\nHades is " +␣

→˓positionDifference + " miles behind you.");
389 decided = false;
390 }
391 else if (input.Equals("6"))
392 {
393 bool decisionMade = false;
394 Console.WriteLine("Are you sure you would like to quit?\n1. Yes\

→˓n2. No");
395 string choice;
396

397 while (!decisionMade)
398 {
399 choice = Console.ReadLine();
400

401 if (choice.Equals("1"))
402 {
403 Console.WriteLine("You have exited the game.");
404 done = true;
405 decided = true;
406 decisionMade = true;
407 }
408 else if (choice.Equals("2"))
409 {
410 decisionMade = true;
411 }
412 else
413 {
414 Console.WriteLine("Please enter either 1 or 2.");
415 }
416 }

(continues on next page)

1.2. Camel Version 2 13

Advanced Game Design

(continued from previous page)

417 }
418 // If player has entered anything that is not above or does not have␣

→˓enough energy...
419 else
420 {
421 if ((input.Equals("2") && energy < 4) || (input.Equals("3") &&␣

→˓energy < 8))
422 {
423 Console.WriteLine("You do not have enough energy for that!");
424 }
425 else
426 {
427 Console.WriteLine("That is not an option, please enter a␣

→˓number between 1 and 4.");
428 }
429 // Keep loop running.
430 decided = false;
431 }
432 }
433

434 // Update Hades position and print out the game status.
435 if (!done)
436 {
437 SetHadesPosition();
438 Console.WriteLine(distanceStatement + energyStatement);
439 Console.WriteLine("While traveling you found " + drachmasGained + "␣

→˓drachmas!");
440 drachmas += drachmasGained;
441 turnCounter += 1;
442 }
443

444 for (int i = 0; i < shops.Length; i++)
445 {
446 if (playerPosition == shops[i])
447 {
448 OpenShop();
449 }
450 }
451 }
452 // --

→˓---
453

454 // --MAIN GAME SETUP-------
→˓---

455 InitializeGame();
456

457 // Run this loop while the game is not over.
458 while (!done)
459 {
460 string input;
461 bool playAgainDecision;
462 if (playerPosition < gameLength)

(continues on next page)

14 Chapter 1. Camel Code Review

Advanced Game Design

(continued from previous page)

463 {
464 if (playerPosition <= hadesPosition)
465 {
466 Console.WriteLine("You were caught! Game Over!");
467 playAgainDecision = false;
468 Console.WriteLine("Would you like to try again?\n1. Yes\n2. No");
469

470 while (!playAgainDecision)
471 {
472 input = Console.ReadLine();
473

474 if (input.Equals("1"))
475 {
476 InitializeGame();
477 playAgainDecision = true;
478 done = false;
479 }
480 else if (input.Equals("2"))
481 {
482 playAgainDecision = true;
483 done = true;
484 }
485 else
486 {
487 Console.WriteLine("Invalid Input. Please enter either 1␣

→˓or 2.");
488 playAgainDecision = false;
489 }
490 }
491 }
492 else
493 {
494 CheckForAncientRuins();
495 GetUserDecision();
496 positionDifference = playerPosition - hadesPosition;
497 Console.WriteLine(lineBreak);
498 }
499 }
500 else
501 {
502 Console.WriteLine("You win!");
503 playAgainDecision = false;
504 while (!playAgainDecision)
505 {
506 input = Console.ReadLine();
507

508 if (input.Equals("1"))
509 {
510 InitializeGame();
511 playAgainDecision = true;
512 done = false;
513 }

(continues on next page)

1.2. Camel Version 2 15

Advanced Game Design

(continued from previous page)

514 else if (input.Equals("2"))
515 {
516 playAgainDecision = true;
517 done = true;
518 }
519 else
520 {
521 Console.WriteLine("Invalid Input. Please enter either 1 or 2.

→˓");
522 playAgainDecision = false;
523 }
524 }
525 }
526 }
527 }
528 // --

→˓---
529 }
530 }

1.3 Camel Version 3

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Text;
5 using System.Threading.Tasks;
6

7 namespace CamelGame
8 {
9 class Program

10 {
11 private static readonly int MILES_TO_HIDEOUT = 200;
12

13 private static bool done;
14 private static bool win;
15 private static bool quit;
16 private static int milesTraveled;
17 private static int fillupsLeft;
18 private static int policeMilesTraveled;
19 private static int gasTankLeft;
20 private static char userInput;
21 private static bool validInput;
22 private static readonly Random rand = new Random();
23

24 static bool FoundOasis(int findingNumber)
25 {
26 if (findingNumber == 15)
27 {
28 return true;

(continues on next page)

16 Chapter 1. Camel Code Review

Advanced Game Design

(continued from previous page)

29 }
30 else
31 {
32 return false;
33 }
34 }
35

36 static void Main()
37 {
38 bool playAgain = true;
39

40 while (playAgain)
41 {
42 Console.WriteLine("Welcome to Bank Heist!\n" +
43 "You have stolen one-million dollars from a bank and must escape to your␣

→˓secret hide out.\n" +
44 "The police are hot on your tail and will stop at nothing to catch you!\n

→˓" +
45 "Out run the cops and escape to your hideout to keep your freedom.\n");
46

47 done = false;
48 win = false;
49 validInput = true;
50

51 milesTraveled = 0;
52 gasTankLeft = 0;
53 fillupsLeft = 3;
54

55 policeMilesTraveled = -20;
56

57

58 while (!done)
59 {
60 Console.WriteLine();
61 Console.WriteLine("A. Ahead moderate speed.\n" +
62 "B. Ahead full speed.\n" +
63 "C. Stop to fill up the gas tank.\n" +
64 "D. Status check.\n" +
65 "Q. Quit.\n");
66

67 Console.Write("What is your choice? ");
68 userInput = Console.ReadKey().KeyChar;
69 Console.WriteLine("\n");
70

71 validInput = true;
72

73 // The user chooses to quit the game.
74 if (char.ToUpper(userInput) == 'Q')
75 {
76 QuitGame();
77 }
78 // The user chooses to check their status.

(continues on next page)

1.3. Camel Version 3 17

Advanced Game Design

(continued from previous page)

79 else if (char.ToUpper(userInput) == 'D')
80 {
81 CheckStatus();
82 }
83 // The user chooses to hide for the night.
84 else if (char.ToUpper(userInput) == 'C')
85 {
86 StopToFillGas();
87 }
88 // The user chooses to move ahead full speed.
89 else if (char.ToUpper(userInput) == 'B')
90 {
91 MoveAhead(false);
92 }
93 // The user chooses to move ahead slowly.
94 else if (char.ToUpper(userInput) == 'A')
95 {
96 MoveAhead(true);
97 }
98 // The user input was invalid.
99 else

100 {
101 Console.WriteLine("You input was invalid.");
102 validInput = false;
103 }
104

105 CheckIfCaught();
106

107 }
108

109 if (win)
110 {
111 Console.WriteLine("\nCongratulations! You've escaped the police and␣

→˓won the game!");
112 }
113 else if (!win && !quit)
114 {
115 Console.WriteLine("\nYou have lost the game.");
116 }
117 else
118 {
119 Console.WriteLine("\nThanks for playing.");
120 }
121

122 Console.Write("Would you like to play again? (Y/N) ");
123 userInput = Console.ReadKey().KeyChar;
124 Console.WriteLine("\n");
125

126 if (char.ToUpper(userInput) == 'Y')
127 {
128 playAgain = true;
129 }

(continues on next page)

18 Chapter 1. Camel Code Review

Advanced Game Design

(continued from previous page)

130 else if (char.ToUpper(userInput) == 'N')
131 {
132 playAgain = false;
133 }
134 else
135 {
136 Console.WriteLine("You have entered an invalid value and the game␣

→˓will now close.\n");
137 playAgain = false;
138 }
139 }
140

141 Console.WriteLine("Thank you for playing. Press any key to exit.");
142 _ = Console.ReadKey();
143 }
144

145 private static void CheckIfCaught()
146 {
147 if (char.ToUpper(userInput) != 'Q' && validInput)
148 {
149 if (gasTankLeft > 8 && !done)
150 {
151 Console.WriteLine("Your car ran out of gas and you got caught.");
152 done = true;
153 }
154 else if (gasTankLeft > 5)
155 {
156 Console.WriteLine("Your gas is getting low.");
157 }
158

159 if ((milesTraveled - policeMilesTraveled) <= 0 && !done)
160 {
161 Console.WriteLine("The police caught you.");
162 done = true;
163 }
164 else if ((milesTraveled - policeMilesTraveled) <= 15)
165 {
166 Console.WriteLine("The police are getting close!");
167 }
168

169 if (milesTraveled >= MILES_TO_HIDEOUT && !done)
170 {
171 done = true;
172 win = true;
173 }
174 }
175 }
176

177 static void QuitGame()
178 {
179 done = true;
180 quit = true;

(continues on next page)

1.3. Camel Version 3 19

Advanced Game Design

(continued from previous page)

181 }
182

183 static void CheckStatus()
184 {
185 Console.WriteLine("Miles traveled: " + milesTraveled);
186 Console.WriteLine("Gas fill-ups remaining: " + fillupsLeft);
187 Console.WriteLine("The police are " + (milesTraveled - policeMilesTraveled) +
188 " miles behind you.");
189 }
190

191 static void StopToFillGas()
192 {
193 gasTankLeft = 0;
194 fillupsLeft -= 1;
195 policeMilesTraveled += rand.Next(7, 15);
196

197 if (policeMilesTraveled < milesTraveled)
198 {
199 Console.WriteLine("Your gas tank is full.");
200 }
201 }
202

203 static void MoveAhead(bool slow)
204 {
205 int currentMilesTraveled;
206 if (!slow)
207 {
208 currentMilesTraveled = rand.Next(10, 21);
209 gasTankLeft += rand.Next(1, 4);
210 }
211 else
212 {
213 currentMilesTraveled = rand.Next(5, 13);
214 gasTankLeft++;
215 }
216 milesTraveled += currentMilesTraveled;
217 policeMilesTraveled += rand.Next(7, 15);
218 Console.WriteLine("You traveled " + currentMilesTraveled + " miles.");
219

220 int findingAHideout = rand.Next(19);
221

222 if (FoundOasis(findingAHideout) && milesTraveled < MILES_TO_HIDEOUT)
223 {
224 Console.WriteLine("You found an abandoned hideout!");
225 fillupsLeft = 3;
226 gasTankLeft = 0;
227 }
228 }
229

230 }
231 }

20 Chapter 1. Camel Code Review

CHAPTER

TWO

BLENDER TO UNITY

Our goal is to learn to create simple, low-poly 3D items in Blender. Color them. Then import to Unity.

Note: Don’t forget to Blender scale interface up before showing this tutorial so people can see.

2.1 Set Up Unity

• Create a new 3D project in Unity

• Create a 20x20 dark green plain for the ground

2.2 Create 3D Items in Blender

• Open Blender

• Notice window and hierarchy, like Unity

• Navigation

– Click-left to select

– Middle click to rotate around focused object (Unity is alt-left click)

– Number pad . to change focus (Unity is F key)

– Shift-Middle button pans (unity is just left click if you are in the ‘hand tool’ mode)

– Show axis thing in upper right to select side views. Also show num pad

21

Advanced Game Design

• Delete everything. We don’t want to import a camera or light.

• We will be creating one file for each object.

– Select item in hierarchy or screen, then delete key

• Add->Mesh->Cylinder

– Lower left, expand out window and select 0.5 meters and 12 verts

• Edit object

– Explain object mode, and edit mode. Use tab to switch

– Show vert, edge, face select tools

– Show alt-click to get circle

– Show ‘E’ to extend.

– Show ‘S’ to scale.

– Show ‘G’ to move.

– Show xyz to select axis

– Make pine tree. Show how to scale to zero.

22 Chapter 2. Blender to Unity

Advanced Game Design

2.3 Materials in Blender

• Materials

– Show how to create a material for leaves

– Assign it.

– Can’t see it! Show select material view. And other views.

– Create new material for trunk

– Now need to assign. Show wireframe, face select, hidden faces.

2.4 Import in Unity

• Back to unity

– Create folder for blender models

– Open in explorer. Copy path

• Back to blender, save to path

– pine tree

• Unity & blender native files

– Export to FBX

• Back to Unity.

– Drag file into scene

2.5 More Practice

• Repeat, but create a tree using an icosphere. Add apples.

– Show Ctrl-L for selecting linked

– Shift-D to duplicate

– Brand new blender file, do not combine

– Watch scale

2.3. Materials in Blender 23

Advanced Game Design

2.6 Weekend Assignment

• Out of class, work through Chapter 1 and Chapter 2. You can skip the last object modifiers item in Chapter 2.

– https://cgcookie.com/course/basics-intro-to-blender-3-0

24 Chapter 2. Blender to Unity

https://cgcookie.com/course/basics-intro-to-blender-3-0

CHAPTER

THREE

MIXAMO TO UNITY

This covers how to get a 3D character into your scene, using Mixamo character assets and animations.

Mixamo has a few character assets (not its primary purpose) and a lot of animations for characters (its primary purpose).

3.1 Setup

Our goal here is to create a landscape for our character to walk around. We’ll add a plane and have a few cubes to help
with a sense of distance and perspective.

1. Create a new Unity 3D project

2. Add a plane, name it “Ground”

3. Scale x/z to 10x10

4. Create a grass material color

25

https://www.mixamo.com/

Advanced Game Design

5. Add material to plane

6. Create a cube

7. Create a different material and add to cube

8. Add rigid body physics to cube. Test.

9. Duplicate a few cubes

10. Position the camera

11. Don’t forget to save

3.2 Download the Character from Mixamo

1. Go to Mixamo.com

2. Log in. You’ll log in with an Adobe id or some SSO choice they have.

3.2.1 Get the Character

Once there, go to the “Character” tab and find a character you like. I’m using Claire.

26 Chapter 3. Mixamo to Unity

https://www.mixamo.com/

Advanced Game Design

1. Select your character

2. Hit “Download”

3. You want “FBX for Unity”. You do not want the generic FBX it defaults to.

4. Make sure T-Pose is selected

5. Download

3.2.2 Get the Animations

Now we need our idle and walking animations.

1. Switch to “Animations”

2. Search on “Idle”

3. Select an idle animation. If you don’t see it play with your character hit “refresh” on the browser. You can adjust
the animation. For example, widen out the hands so they don’t clip through the characer.

3.2. Download the Character from Mixamo 27

Advanced Game Design

4. Click “Download”

5. Select FBX for Unity. (Again, the default FBX doesn’t work.)

6. Select “Without Skin” because we already downloaded that.

Next, repeat for a walking animation. You’ll get an extra check-box for in-place which you must check. This will keep
the animation from moving the character forward, while the code thinks the character is in the same location.

Warning: You must select “In-Place” checkbox for any moving animation

3.3 Add Mixamo Characters and Animations to Project

Now we want to get the character to appear in our project.

1. Create a folder for your character. In this case, I used “Claire”.

2. Create subfolders for “Materials” and “Textures”

3. Drag the character and two animations from your ‘downloads’ to the folder you created.

4. Drag the character from the assets to your scene. It will be white, as no textures ore materials have been applied
yet.

5. Next click on your character in Assets.

28 Chapter 3. Mixamo to Unity

Advanced Game Design

6. Select Materials in the Inspector panel.

7. Click “Extract Textures” and put them in the Textures folder we created.

8. Click “Extract Materials” and put them in the Materials folder we created.

9. If you get a message like this, just go ahead and fix.

10. Now your character should look good.

3.3. Add Mixamo Characters and Animations to Project 29

Advanced Game Design

3.4 Get Character to Move

Now we need to get the character to move around. We are going to use a character controller. It is more complex
than rigid body physics, but offers more control.

3.4.1 Add Character Controller

1. Select your character.

2. Select “Add Component” in the inspector.

3. Add a character controller.

4. The character controller has a ‘capsule’ for hitbox calculations. Adjust the size and positioning of this so it goes
around your character.

3.4.2 Add Character Script

• Make the camera a ‘child’ of the player and position behind the player.

• Add this character script:

1 using System.Collections;
2 using System.Collections.Generic;
3 using UnityEngine;
4

5 public class CharacterScript : MonoBehaviour
(continues on next page)

30 Chapter 3. Mixamo to Unity

Advanced Game Design

(continued from previous page)

6 {
7 [SerializeField] Transform playerCamera = null;
8 [SerializeField] float mouseSensitivity = 3.5f;
9 [SerializeField] float walkSpeed = 6.0f;

10 [SerializeField] float gravity = -13.0f;
11 [SerializeField] [Range(0.0f, 0.5f)] float moveSmoothTime = 0.3f;
12 [SerializeField] [Range(0.0f, 0.5f)] float mouseSmoothTime = 0.03f;
13

14 [SerializeField] bool lockCursor = true;
15

16 float cameraPitch = 0.0f;
17 float velocityY = 0.0f;
18 CharacterController controller = null;
19

20 Vector2 currentDir = Vector2.zero;
21 Vector2 currentDirVelocity = Vector2.zero;
22

23 Vector2 currentMouseDelta = Vector2.zero;
24 Vector2 currentMouseDeltaVelocity = Vector2.zero;
25

26 void Start()
27 {
28 controller = GetComponent<CharacterController>();
29 if (lockCursor)
30 {
31 Cursor.lockState = CursorLockMode.Locked;
32 Cursor.visible = false;
33 }
34 }
35

36 void Update()
37 {
38 UpdateMouseLook();
39 UpdateMovement();
40 }
41

42 void UpdateMouseLook()
43 {
44 Vector2 targetMouseDelta = new Vector2(Input.GetAxis("Mouse X"), Input.GetAxis(

→˓"Mouse Y"));
45

46 currentMouseDelta = Vector2.SmoothDamp(currentMouseDelta, targetMouseDelta, ref␣
→˓currentMouseDeltaVelocity, mouseSmoothTime);

47

48 cameraPitch -= currentMouseDelta.y * mouseSensitivity;
49 cameraPitch = Mathf.Clamp(cameraPitch, -90.0f, 90.0f);
50

51 playerCamera.localEulerAngles = Vector3.right * cameraPitch;
52 transform.Rotate(Vector3.up * currentMouseDelta.x * mouseSensitivity);
53 }
54

55 void UpdateMovement()

(continues on next page)

3.4. Get Character to Move 31

Advanced Game Design

(continued from previous page)

56 {
57 Vector2 targetDir = new Vector2(Input.GetAxisRaw("Horizontal"), Input.GetAxisRaw(

→˓"Vertical"));
58 targetDir.Normalize();
59

60 currentDir = Vector2.SmoothDamp(currentDir, targetDir, ref currentDirVelocity,␣
→˓moveSmoothTime);

61

62 if (controller.isGrounded)
63 velocityY = 0.0f;
64

65 velocityY += gravity * Time.deltaTime;
66

67 Vector3 velocity = (transform.forward * currentDir.y + transform.right *␣
→˓currentDir.x) * walkSpeed + Vector3.up * velocityY;

68

69 controller.Move(velocity * Time.deltaTime);
70

71 }
72 }

• While the character does not animate yet, it should be able to move with mouse and WASD keys.

3.5 Animate

3.5.1 Add Armature Rigs

• Select your character in the assets folder.

• In the “Inspector” tab, select “Rig”.

• Select “Humanoid”

• Select “Create From This Model”.

• Select “Apply”

• Select the “Idle” animation.

32 Chapter 3. Mixamo to Unity

Advanced Game Design

• In the “Inspector” tab, select “Rig”.

• Select “Humanoid”

• Select “Copy From Other Avatar”.

• Double-click on “Source” and select the avatar you just created

• Select “Apply”

• Repeat for the “Walk” animation.

• There may be warnings. That’s ok.

3.5.2 Add Idle Animation

1. Click on your character folder in assets, and add an Animator Controller.

2. Double click on the animator controller to edit it. Then drag the idle animation to the controller.

3. Drag the animator controller to your player object. Run. The player should now display the idle animation.

3.5.3 Add Speed Parameter

We will need to transition from idle to walking based on speed. We need to update our character controller to spit this
out. Here’s our updates:

1 using System.Collections;
2 using System.Collections.Generic;
3 using UnityEngine;
4

5 public class CharacterScript : MonoBehaviour
6 {
7 [SerializeField] Transform playerCamera = null;
8 [SerializeField] float mouseSensitivity = 3.5f;
9 [SerializeField] float walkSpeed = 6.0f;

10 [SerializeField] float gravity = -13.0f;
11 [SerializeField] [Range(0.0f, 0.5f)] float moveSmoothTime = 0.3f;
12 [SerializeField] [Range(0.0f, 0.5f)] float mouseSmoothTime = 0.03f;
13 Animator _animator;
14

15 [SerializeField] bool lockCursor = true;
16

17 float cameraPitch = 0.0f;
18 float velocityY = 0.0f;

(continues on next page)

3.5. Animate 33

Advanced Game Design

(continued from previous page)

19 Vector3 velocity = Vector3.zero;
20

21 CharacterController controller = null;
22

23 Vector2 currentDir = Vector2.zero;
24 Vector2 currentDirVelocity = Vector2.zero;
25

26 Vector2 currentMouseDelta = Vector2.zero;
27 Vector2 currentMouseDeltaVelocity = Vector2.zero;
28

29 void Start()
30 {
31 _animator = GetComponentInChildren<Animator>();
32 controller = GetComponent<CharacterController>();
33 if (lockCursor)
34 {
35 Cursor.lockState = CursorLockMode.Locked;
36 Cursor.visible = false;
37 }
38 }
39

40 void Update()
41 {
42 UpdateMouseLook();
43 UpdateMovement();
44 float speedPercent = velocity.magnitude / walkSpeed;
45 _animator.SetFloat("speed", speedPercent);
46 }
47

48 void UpdateMouseLook()
49 {
50 Vector2 targetMouseDelta = new Vector2(Input.GetAxis("Mouse X"), Input.GetAxis(

→˓"Mouse Y"));
51

52 currentMouseDelta = Vector2.SmoothDamp(currentMouseDelta, targetMouseDelta, ref␣
→˓currentMouseDeltaVelocity, mouseSmoothTime);

53

54 cameraPitch -= currentMouseDelta.y * mouseSensitivity;
55 cameraPitch = Mathf.Clamp(cameraPitch, -90.0f, 90.0f);
56

57 playerCamera.localEulerAngles = Vector3.right * cameraPitch;
58 transform.Rotate(Vector3.up * currentMouseDelta.x * mouseSensitivity);
59 }
60

61 void UpdateMovement()
62 {
63 Vector2 targetDir = new Vector2(Input.GetAxisRaw("Horizontal"), Input.GetAxisRaw(

→˓"Vertical"));
64 targetDir.Normalize();
65

66 currentDir = Vector2.SmoothDamp(currentDir, targetDir, ref currentDirVelocity,␣
→˓moveSmoothTime);

(continues on next page)

34 Chapter 3. Mixamo to Unity

Advanced Game Design

(continued from previous page)

67

68 if (controller.isGrounded)
69 velocityY = 0.0f;
70

71 velocityY += gravity * Time.deltaTime;
72

73 velocity = (transform.forward * currentDir.y + transform.right * currentDir.x) *␣
→˓walkSpeed + Vector3.up * velocityY;

74

75 controller.Move(velocity * Time.deltaTime);
76

77 }
78 }

Now in the Animator, we should be able to add speed:

Then we can add in our “walk” animation. Add transitions, and make it based on speed. Greater than 0.3, we animate.
Less than 0.3, we idle.

Right now, the animations will only run once. Double-click between both animations and make sure that “Loop Time”
box is checked for both animations.

3.5. Animate 35

Advanced Game Design

Also, the animations won’t transition until they are done. Flip between both animations and uncheck “Has Exit Time.”

36 Chapter 3. Mixamo to Unity

Advanced Game Design

3.5.4 Uncheck Root Motion

Depending on your animation, the animation can move the character. Typically it works best if it is just an animation.
Select your character, and in the “Animator” section, uncheck root motion:

3.6 References

• Acacia Developer. First Person Controller. Sep 10, 2020

• Acacia Developer. Unity FPS Controller code. Sep 10, 2020

• Niklas Bergstrand. Adding walk and run animation in Unity. May 19, 2021

3.6. References 37

https://www.youtube.com/watch?v=PmIPqGqp8UY
https://github.com/Acacia-Developer/Unity-FPS-Controller/blob/master/Assets/Script/PlayerController.cs
https://bergstrand-niklas.medium.com/adding-walk-and-run-animation-in-unity-408f87d37ef2

Advanced Game Design

38 Chapter 3. Mixamo to Unity

CHAPTER

FOUR

TEXTURE OBJECTS

We want to put an image on an object, rather than just have a solid color.

4.1 Texture Types

There are several types of textures.

• Diffuse/Albedo map - Color for object. The is the basics of what you need. Although the image can look “flat.”
Think bricks. Shouldn’t look flat, but will be with just a diffuse map.

• Bump maps - Create illusion of depth via grayscale data. Shade of gray is height. These are grayscale images.

• Normal maps - Better than bump maps, uses RGB for more info. This can give us x, y, and z. Allows for angle
and more realistic looks. These maps tend to look blue.

• Displacement/Height map - This map is used to actually changes surface they are on.

• Specular/Metallic - Maps out what part of the image is shiny.

Here are some samples from Texturise, their “Tilable Wood Planks Texture”.

Fig. 1: Texture

Here they are, in action on Blender.

39

http://www.texturise.club/
http://www.texturise.club/2013/08/tileable-wood-planks-maps.html

Advanced Game Design

Fig. 2: Normal

Fig. 3: Specular

Fig. 4: Displacement

40 Chapter 4. Texture Objects

Advanced Game Design

Fig. 5: Albido/Texture image/Color

Fig. 6: Normal

Fig. 7: Displacement

Fig. 8: Specular

4.1. Texture Types 41

Advanced Game Design

Fig. 9: Everything

4.2 Texture Websites

Where can you get textures?

• Texturise

• Poly Haven

• Poliigon (Paid)

4.3 Very Simple Textures

• Create a new project.

• Add a 10x10 plane.

• Create a folder called “Textures”

• Toss the images there.

• Create a material in that folder.

• Toss onto the plane.

• Put images into texture

– Toss ‘texture’ to Albedo.

– Toss ‘specular’ to ‘metalic’. Change to ‘Albedo Alpha’ and turn smoothness down to about 0.1. You can
use this for occlusion instead.

– Toss ‘normal’ to ‘normal map’

– Toss ‘displacement’ to ‘Height map’

42 Chapter 4. Texture Objects

http://www.texturise.club/
https://polyhaven.com/textures
https://www.poliigon.com/textures

Advanced Game Design

• You can change the ‘tiling’ to control how many times it repeats on the surface.

4.4 UV Mapping

Take some road textures:

Fig. 10: Road texture

Create a road texture. I used specular for occlusion. Apply to a new cube.

4.4. UV Mapping 43

Advanced Game Design

Fig. 11: Road texture normal

Fig. 12: Road texture specular

44 Chapter 4. Texture Objects

Advanced Game Design

Looks ok. But what if we scale the cube?

We need to change the geometry, and not scale the item. Then do a “UV Unwrap”.

Go to blender. Create a cube. Go into edit mode and not object mode. Change the cube dimensions.

4.4. UV Mapping 45

Advanced Game Design

Change the bottom view to UV. Do a smart UV unwrap:

46 Chapter 4. Texture Objects

Advanced Game Design

Delete camera and light. Save into your Assets folder. Toss cube onto scene. Apply material. See how it maps?

Change mapping. Save. See results.

4.4. UV Mapping 47

Advanced Game Design

48 Chapter 4. Texture Objects

Advanced Game Design

4.4. UV Mapping 49

Advanced Game Design

50 Chapter 4. Texture Objects

CHAPTER

FIVE

2D UNITY PART 1

Contents

• 2D Unity Part 1

– Create sample sprites and add to Unity

– Change sprite settings

– Make sprites solid

– Add in score

– Add in scene change

– Summary

5.1 Create sample sprites and add to Unity

1. Clone the base Unity project: https://github.com/pvcraven/2022_Class_2D_Project

2. Create sprites in Aseprite.

• Use NES palette

• Create a 16x16 character.

• Create a 16x32 tree. (Or some other size, keeping in mind 16x16 is the character size.)

51

https://github.com/pvcraven/2022_Class_2D_Project

Advanced Game Design

• Save to Assets/Sprites/Trees or Assets/Sprites/Characters folder.

• Call your character tree_name or character_name. Obviously, use your first and/or last name, not
“name”.

• Export your sprite as a .png in that same folder.

3. Open in Unity, confirm the assets are there.

4. Do a git add, commit, push and pull to sync with the whole class.

Warning: Be careful of .meta files

Unity adds a .meta file that tags a GUID for each file. If you create or move a file into a Unity project, let unity
create a .meta for it before check in! This includes the exported .png. Failure to do this will cause a lot of merge
headaches.

5.2 Change sprite settings

1. Create your own scene. Call it scene_name.

2. Drag character onto the screen.

3. Way too small. Unity defaults to 100 pixels to one ‘unit’ which is 1 meter. Change from 100 to 16.

4. Great. Now the character is blurry. Change the filtering to ‘point’.

5. Character might be blotchy. Turn off compression.

6. Should be able to run the scene and see character properly.

7. Repeat these steps for your sprites. Don’t do this for other people’s sprites.

8. Sync with GitHub.

52 Chapter 5. 2D Unity Part 1

Advanced Game Design

5.3 Make sprites solid

1. Add a rigid body 2d. Run the game. Character should now fall.

2. Zero out the gravity.

3. Add to your character, the MyCharacterController script that is already in the project under the scripts folder.
Examine the script and see how it works.

4. Should be able to move character with WSAD. Can adjust speed as needed.

5. Add your tree.

6. Try running. No collision.

7. Add colliders to the character and tree.

• There are circle colliders, capsule colliders, box colliders. Pick the best one.

• You might not want to make a collider around everything for a more 3D look.

8. Try running. Character spins!

9. Freeze rotation.

5.3. Make sprites solid 53

https://github.com/pvcraven/2022_Class_2D_Project/blob/main/Assets/Scripts/MyCharacterController.cs

Advanced Game Design

10. Character may or may not appear behind/ahead of the tree properly. You can use sort mode in project settings to
fix:

5.4 Add in score

Add in a sprite to increase your score.

• You’ll need a collider. Make the collider a “trigger”.

• You’ll need to add in the ScoreScript. Examine this script and the character controller together to see how they
work.

• Set the points for the score script.

54 Chapter 5. 2D Unity Part 1

https://github.com/pvcraven/2022_Class_2D_Project/blob/main/Assets/Scripts/ScoreScript.cs

Advanced Game Design

• Test.

• You can also have items that make the score go down by putting in a negative number for points.

5.5 Add in scene change

Create a sprite that will will cause you to go to the next level.

• You’ll need a collider. Make the collider a “trigger”.

• You’ll need to add in the SceneChangeScript. Examine this script and the character controller together to see
how they work.

• Your scene must appear in File. . .Build Settings. This is where you determine the order of levels. As this is a
common area, only one person can edit at a time. So let the instructor do this in class.

5.5. Add in scene change 55

https://github.com/pvcraven/2022_Class_2D_Project/blob/main/Assets/Scripts/SceneChangeScript.cs

Advanced Game Design

5.6 Summary

This should step you through most of what you need to complete 2D Assignment 1. Expand what you’ve learned to
create an explorable level. Don’t worry about the background image yet, we’ll get to that with tiles.

56 Chapter 5. 2D Unity Part 1

CHAPTER

SIX

2D UNITY PART 2

Contents

• 2D Unity Part 2

– Create tile set

– Import and split tile set

– Create tile map and palette

6.1 Create tile set

Tiles will be 16x16. We’ll make multiple tiles at a time. Make a 16*3 and 16*4 image:

Keep in mind in Aseprite you can:

• Use things like 16*3 in the sprite dimensions, no need to multiply itself.

• You can show the grid overlay

57

Advanced Game Design

6.2 Import and split tile set

When you import the sprite, we need to set our standard three changes, and then set it to multiple sprites. Then we
click on the nearly-hidden sprite editor button and slice it up.

• Commit and push.

6.3 Create tile map and palette

• Create a new rectangular tile map for your scene.

• Open the tile palette.

• Create your own tile palette with your own name

58 Chapter 6. 2D Unity Part 2

Advanced Game Design

Create a new palette. Create a new folder for it “Tile Palette”.

Select your sprites. Move to palette. Create folder for “Tile images”.

6.3. Create tile map and palette 59

Advanced Game Design

Order is weird. Somehow there’s a way to import better I think, but I don’t know it. To change order, click ‘Edit’ button
and then alternate between S and M keys to move tiles to where you’d like.

60 Chapter 6. 2D Unity Part 2

Advanced Game Design

• Paint with the tiles.

• Change your rendering order so tiles appear below your sprites. Use layers, or ordering in layers.

6.3. Create tile map and palette 61

Advanced Game Design

• Show how to do layers

• Show how to do a tile collider 2d

62 Chapter 6. 2D Unity Part 2

CHAPTER

SEVEN

2D ANIMATION

Contents

• 2D Animation

– Create a time-based animation in Aseprite

– Import a sprite sheet in Unity

– Create animated character frames in Aseprite

– Get character working with idle animation in Unity

In this tutorial we’ll work on animating sprites.

7.1 Create a time-based animation in Aseprite

Create a folder for your animation.

Follow one of these tutorials:

Fig. 1: Source: SadFace-RL Fire Animations

Fig. 2: Source: SadFace-RL Water Animations

Work on using:

• Keyboard shortcuts

• Select tool

• Frames

Export a sprite sheet.

• File->Export Sprite Sheet

• Output->Output file

63

https://sadface-rl.tumblr.com/post/180794142504/fire-animation-tutorial
https://sadface-rl.tumblr.com/post/181133179434/waterfall-animation-tutorial

Advanced Game Design

7.2 Import a sprite sheet in Unity

Import a sprite sheet and slice it like we did before.

• Drag the first image onto your scene.

• Click Window. . .Animation

• Click your object, you should see an option to create an animation and controller from it.

• Drag images onto the timeline

• Too fast.

• Drag out the frames, slow it down

Fig. 3: Source: SadFace-RL Animation, getting started

7.3 Create animated character frames in Aseprite

Fig. 4: Source: SadFace-RL Characters, the human male

Fig. 5: Source: SadFace-RL Animation, the walk cycle

64 Chapter 7. 2D Animation

https://www.deviantart.com/sadfacerl/art/Animation-Getting-Started-754670906
https://www.deviantart.com/sadfacerl/art/Tutorial-Characters-Human-Male-757146529
https://www.deviantart.com/sadfacerl/art/Animation-Tutorial-The-Walk-Cycle-750244361

Advanced Game Design

7.4 Get character working with idle animation in Unity

Here’s a video that covers what we are doing:

First, go ahead an import your character animations, then slice up the images.

If you want to replace a character you already have with the animated sprites, (recommended) you can replace the
character’s texture by dragging the sprite image to the proper location.

Make sure your program still works ok.

Create an idle animation for your character like we did before.

7.4. Get character working with idle animation in Unity 65

Advanced Game Design

Make sure that works. Now we need a clip for walking/running. Add a new clip from the Animator tab:

Show how to play clip, and change clip.

See how both clips show up in Animator.

Add a parameter, and transitions:

66 Chapter 7. 2D Animation

Advanced Game Design

Update code:

1 using System.Collections;
2 using System.Collections.Generic;
3 using UnityEngine;
4 using UnityEngine.SceneManagement;
5

6

7 public class MyAnimatedCharacterController : MonoBehaviour
8 {
9 public int score = 0;

10

11 Rigidbody2D body;
12

13

14 float horizontal;
15 float vertical;
16 float moveLimiter = 0.7f;
17

18 public float runSpeed = 5.0f;
19

20 public AudioSource sound;
21 public AudioSource scoreIncreaseSound;
22 public AudioSource scoreDecreaseSound;
23

24 private SpriteRenderer spriteRenderer;
25 private Animator animator;
26

27 void Start()
28 {
29 // Get the rigid body component for the player character.
30 // (required to have one)
31 body = GetComponent<Rigidbody2D>();
32 spriteRenderer = GetComponent<SpriteRenderer>();

(continues on next page)

7.4. Get character working with idle animation in Unity 67

Advanced Game Design

(continued from previous page)

33 animator = GetComponent<Animator>();
34 }
35

36 void Update()
37 {
38 // Get our axis values
39 horizontal = Input.GetAxisRaw("Horizontal");
40 vertical = Input.GetAxisRaw("Vertical");
41 }
42

43 void FixedUpdate()
44 {
45

46 // If player is running diagonally, we don't want them to move extra-fast.
47 if (horizontal != 0 && vertical != 0) // Check for diagonal movement
48 {
49 // limit movement speed diagonally, so you move at 70% speed
50 horizontal *= moveLimiter;
51 vertical *= moveLimiter;
52 }
53

54 if (horizontal > 0.1)
55 spriteRenderer.flipX = false;
56 else
57 spriteRenderer.flipX = true;
58

59 // Set player velocity
60 body.velocity = new Vector2(horizontal * runSpeed, vertical * runSpeed);
61 animator.SetFloat("HorizontalSpeed", Mathf.Abs(horizontal));
62 }
63

64 void OnTriggerEnter2D(Collider2D colliderEvent)
65 {
66 // Did we run into an object that will affect our score?
67 ScoreScript scoreObject = colliderEvent.gameObject.

→˓GetComponent(typeof(ScoreScript))
68 as ScoreScript;
69

70 if (scoreObject != null)
71 {
72 // Yes, change the score
73 score += scoreObject.points;
74

75

76 // Destroy the object
77 Destroy(colliderEvent.gameObject);
78 }
79

80 // Did we run into an object that will cause a scene change?
81 SceneChangeScript sceneChangeObject = colliderEvent.gameObject.

→˓GetComponent(typeof(SceneChangeScript))
82 as SceneChangeScript;

(continues on next page)

68 Chapter 7. 2D Animation

Advanced Game Design

(continued from previous page)

83 if (sceneChangeObject != null) {
84 // Yes, get our current scene index
85 int currentSceneIndex = SceneManager.GetActiveScene().buildIndex;
86 // Load up the scene accourding to the sceneChange value
87 UnityEngine.SceneManagement.SceneManager.LoadScene(currentSceneIndex +␣

→˓sceneChangeObject.sceneChange);
88 }
89 }
90 void OnGUI()
91 {
92 // Dispaly our score
93 GUIStyle guiStyle = new GUIStyle(GUI.skin.label);
94 guiStyle.fontSize = 32; //modify the font height
95 GUI.Label(new Rect(10, 10, 250, 50), "Score: " + score, guiStyle);
96 }
97 }

7.4. Get character working with idle animation in Unity 69

Advanced Game Design

70 Chapter 7. 2D Animation

CHAPTER

EIGHT

2D SHOOTING

Contents

• 2D Shooting

– Make a sprites in Aseprite

– Detect mouse down events

– Create a bullet

– Create targets

– Add a bullet script to destroy

– Calculate angles

There are three main ways to shoot things in Unity.

• For laser-types of things where you insta-hit, you can use ray-casting.

• You can move sprites and check by distance.

• You can move sprites, and use colliders. This is how we are going to demo things here.

8.1 Make a sprites in Aseprite

We need a target and a projectile.

• Make a bullet, laser, heart, whatever projectile you want to shoot.

• Make a target to hit.

• Export, and import into Unity changing the normal three things. (pixels per unit, compression, filter)

71

Advanced Game Design

8.2 Detect mouse down events

Now, we will use the mouse button to shoot. First, we need to detect mouse-down events.

In our Update method on cour controller (not FixedUpdate, doesn’t seem to work well), we can detect a mouse-down
event with Input.GetMouseButtonDown(0). The 0 is for our left mouse button. An implementation might look like:

// Has the mouse been pressed?
if (Input.GetMouseButtonDown(0))
{

Debug.Log("Mouse down");
}

Code and confirm it works.

8.3 Create a bullet

Now we need something to shoot.

• Create a bullet prefab.

• Add a box collider so we can detect collisions. Set the collider to be a trigger, as we don’t want it bumping into
things.

• Add a rigidbody so we can move it via physics.

72 Chapter 8. 2D Shooting

Advanced Game Design

8.3. Create a bullet 73

Advanced Game Design

Go to your character controller cand add a public variable for the prefab. Code would look like:

public GameObject bulletPrefab;

Then drag the prefab into the new blank spot in your character.

Update code to fire the bullet:

// Mouse pressed?
if (Input.GetMouseButtonDown(0))
{

// Make a bullet
var bullet = Instantiate(bulletPrefab, body.position, Quaternion.identity);
// Get the body of the bullet
var bulletbody = bullet.GetComponent<Rigidbody2D>();
// Move the bullet to the right
bulletbody.velocity = new Vector2(4, 0);

}

It would be better code if you make the speed a public variable rather than hard-code it. And we’ll get to aiming in a
bit.

8.4 Create targets

Now we need something to shoot. Create targets. Add a collider. Add a tag for “Destroyable”.

74 Chapter 8. 2D Shooting

Advanced Game Design

8.5 Add a bullet script to destroy

This bullet script will destroy itself after moving 8 units, or it will destroy an object tagged ‘destroyable’.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class BulletScript : MonoBehaviour
{

Vector3 _origin;
public float maxDistance = 8.0f;

// Start is called before the first frame update
void Start()
{

// Get position we started at, so we can see how far the bullet traveled.
_origin = transform.position;

}

public void OnTriggerEnter2D(Collider2D collision)
{

Debug.Log("Trigger");
if (collision.tag == "Destroyable")
{

Debug.Log("Destroyable");
// Destroy item we hit
Destroy(collision.gameObject);
// Cause bullet to destroy itself
// Put this outside the if to get deleted when hitting non-destroyable␣

→˓objects
Destroy(gameObject);

}
}

// Update is called once per frame
void Update()
{

// How far has the bullet gone?
float distance = Vector2.Distance(_origin, transform.position);
// If too far, then remove ourselves from the game.
if (distance > maxDistance)
{

// Cause bullet to destroy itself
Destroy(gameObject);

}
}

}

8.5. Add a bullet script to destroy 75

Advanced Game Design

8.6 Calculate angles

Next, if we want to fire in a particular direction, we need to do some math. Here’s the code with comments.

1 // Get the angle of a vector
2 public float GetYRotFromVec(Vector2 v1)
3 {
4 float _r = Mathf.Atan2(v1.y, v1.x);
5 float _d = (_r / Mathf.PI) * 180;
6

7 return _d;
8 }
9

10 void Update()
11 {
12 // Get our axis values
13 horizontal = Input.GetAxisRaw("Horizontal");
14 vertical = Input.GetAxisRaw("Vertical");
15

16 // Has the mouse been pressed?
17 if (Input.GetMouseButtonDown(0))
18 {
19 // -- Fire a bullet
20

21 // Create the bullet
22 var bullet = Instantiate(bulletPrefab, body.position, Quaternion.identity);
23 // Get a reference to the bullet's rigid body
24 var bulletbody = bullet.GetComponent<Rigidbody2D>();
25 // Where is the mouse on the screen?
26 var mousePosition = Input.mousePosition;
27 // Where is the mouse in the world?
28 Vector3 target3 = Camera.main.ScreenToWorldPoint(mousePosition);
29 // Set the z value of this vector 3
30 target3.z = 0;
31 // What is the normalized vector from the player to the mouse?
32 Vector2 direction = (target3 - transform.position).normalized;
33 // What is the angle in degrees?
34 float angle = GetYRotFromVec(direction);
35 // Rotate the bullet
36 bulletbody.rotation = angle;
37 // Give the bullet speed
38 bulletbody.velocity = direction * bulletSpeed;
39 }
40 }

76 Chapter 8. 2D Shooting

CHAPTER

NINE

ADDING A BLOOM EFFECT

Contents

• Adding a Bloom Effect

– Step 1 - Add the post processing package to your project

– Step 2 - Enable HDR for the project

– Step 3 - Add a post-processing layer to the camera

– Step 4 - Create a post processing profile

– Step 5 - Create a post processing volume

– Step 6 - Make one thing glow

9.1 Step 1 - Add the post processing package to your project

Go to Window -> Package Manager and then install the “Post Processing” package. This is project-wide so this only
needs to happen once for an entire project.

77

Advanced Game Design

9.2 Step 2 - Enable HDR for the project

9.3 Step 3 - Add a post-processing layer to the camera

Select the camera. Add a post process layer component to the camera.

Select the ‘Bloom’ layer. You may need to create this layer if it does not yet exist for your project.

78 Chapter 9. Adding a Bloom Effect

Advanced Game Design

9.4 Step 4 - Create a post processing profile

Find/create a directory for post processors.

Create a post processor:

Add a bloom effect:

9.4. Step 4 - Create a post processing profile 79

Advanced Game Design

9.5 Step 5 - Create a post processing volume

Go to your project, add an empty. Call it “post-process bloom” or something like that.

Add a “Process Volume” component to it.

Drag in the post processor to the proper field.

80 Chapter 9. Adding a Bloom Effect

Advanced Game Design

This makes everything glow, fine if you are doing some neon geometry wars thing. But what about just one thing?

9.6 Step 6 - Make one thing glow

Set post-processing intensity to 1. Zero turns it off, we don’t want that. Above 1 will make everything glow. Don’t
want that.

Create a new material called “Glow”.

Give it the following properties:

9.6. Step 6 - Make one thing glow 81

Advanced Game Design

82 Chapter 9. Adding a Bloom Effect

Advanced Game Design

You have to specify the color, it doesn’t pick it up from the image.

9.6. Step 6 - Make one thing glow 83

Advanced Game Design

84 Chapter 9. Adding a Bloom Effect

CHAPTER

TEN

2D PARTICLE SYSTEM

Contents

• 2D Particle System

– Create a white sprite particle

– Add a particle system

– Make the particles sprites

∗ Scale the particles

∗ Color the particles

∗ Amount of particles

∗ Particle trails

– Make things blow up when hit

Let’s make particles! For a YouTube video that covers this, see: https://www.youtube.com/watch?v=_z68_OoC_0o

10.1 Create a white sprite particle

Use Aseprite

10.2 Add a particle system

In Unity, select GameObject -> Effects -> Particle System. You should now have a new particle system in your game
throwing off fuzzy dots.

85

https://www.youtube.com/watch?v=_z68_OoC_0o

Advanced Game Design

The rotation of the default system has the particles flying up. Take out the -90 rotation on the particle game object and
the particles fly towards the camera. Experiment with it.

Experiment with shape of emitter.

Add gravity to make the particles fly down.

86 Chapter 10. 2D Particle System

Advanced Game Design

10.3 Make the particles sprites

10.3.1 Scale the particles

10.3.2 Color the particles

10.3. Make the particles sprites 87

Advanced Game Design

10.3.3 Amount of particles

Adjust “rate over time”

10.3.4 Particle trails

Try adding trails, as shown in the video.

10.4 Make things blow up when hit

Update your code so that your bullet script will create a “burst” prefab when you hit an item. You’ll need to have the
prefab be created with a script that will destroy itself over time.

Note: This example just shows the important parts. It doesn’t show the needed “make the bullet disappear after a
while.” We showed that earlier. You’ll need to combine your scripts.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class BurstBulletScript : MonoBehaviour
{

public GameObject burstPrefab;
Rigidbody2D body;

// Start is called before the first frame update
void Start()
{

body = GetComponent<Rigidbody2D>();
}

public void OnTriggerEnter2D(Collider2D collision)
{

if (collision.tag == "Destroyable")
{

// Destroy the item
Destroy(collision.gameObject);
// Create the 'burst' effect
var burst = Instantiate(burstPrefab, body.position, Quaternion.identity);

}
}

}

88 Chapter 10. 2D Particle System

CHAPTER

ELEVEN

2D ATTACKS

This section based off: https://www.youtube.com/watch?v=1QfxdUpVh5I

11.1 Add time-limited trigger for attacks

1 using System.Collections;
2 using System.Collections.Generic;
3 using UnityEngine;
4

5 public class CravenAttackScript : MonoBehaviour
6 {
7 // How frequently can we attack?
8 public float attackTimeLimit = 0.5f;
9

10 // Countdown timer for attacks
11 private float attackCountdownTimer = 0;
12

13 void Update()
14 {
15 // See if we can attack, via timer.
16 if (attackCountdownTimer <= 0)
17 {
18 // We can attack. See if user hit space bar.
19 if (Input.GetKey(KeyCode.Space))
20 {
21 Debug.Log("Attack");
22 attackCountdownTimer = attackTimeLimit;
23 }
24 }
25 else
26 {
27 // Attack timer needs count-down
28 attackCountdownTimer -= Time.deltaTime;
29 }
30 }
31 }

89

https://www.youtube.com/watch?v=1QfxdUpVh5I

Advanced Game Design

11.2 Do damage

1 using System.Collections;
2 using System.Collections.Generic;
3 using UnityEngine;
4

5 public class CravenAttackScript : MonoBehaviour
6 {
7 // How frequently can we attack?
8 public float attackTimeLimit = 0.5f;
9

10 // Countdown timer for attacks
11 private float attackCountdownTimer = 0;
12

13 // An empty parented that says where to attack
14 public Transform attackPos;
15 // Radius of attack circle
16 public float attackRange;
17 // What layer will the enemies be on?
18 public LayerMask enemyLayer;
19 // How much damage to deal
20 public int damage = 3;
21

22 void Update()
23 {
24 // See if we can attack, via timer.
25 if (attackCountdownTimer <= 0)
26 {
27 // We can attack. See if user hit space bar.
28 if (Input.GetKey(KeyCode.Space))
29 {
30 Debug.Log("Attack");
31 // Reset the countdown timer
32 attackCountdownTimer = attackTimeLimit;
33 // What enemies did we hit?
34 Collider2D[] enemiesToDamage = Physics2D.OverlapCircleAll(attackPos.

→˓position, attackRange, enemyLayer);
35 // Loop through each enemy we hit
36 for(int i=0; i < enemiesToDamage.Length; i++)
37 {
38 // Get the enemy script attached to this object
39 CravenEnemyScript enemyScript = enemiesToDamage[i].GetComponent

→˓<CravenEnemyScript>();
40 // If there is an enemy script
41 if (enemyScript)
42 {
43 // Damage
44 enemiesToDamage[i].GetComponent<CravenEnemyScript>().health -=␣

→˓damage;
45 // Print health levels
46 Debug.Log(enemiesToDamage[i].GetComponent<CravenEnemyScript>().

→˓health);
(continues on next page)

90 Chapter 11. 2D Attacks

Advanced Game Design

(continued from previous page)

47

48 // --- ToDo: destroy enemy here when health <= 0
49 }
50 else
51 {
52 // We hit an enemy, but there's no script attached to it.
53 Debug.Log("Enemy Script not present");
54 }
55 }
56 }
57 }
58 else
59 {
60 // Attack timer needs count-down
61 attackCountdownTimer -= Time.deltaTime;
62 }
63 }
64 // Used to draw a circle when we are selecting the player in the scene view
65 void OnDrawGizmosSelected()
66 {
67 Gizmos.color = Color.red;
68 Gizmos.DrawWireSphere(attackPos.position, attackRange);
69 }
70 }

Note: You’ll need: * An enemy script * Turn on gizmos in the scene view * An enemy layer * Program a change to
the attackPos when user changes direction.

11.2. Do damage 91

Advanced Game Design

92 Chapter 11. 2D Attacks

CHAPTER

TWELVE

CAMEL IN C#

If you had me for CMSC 150, you likely remember the Camel game. Your task for this assignment is to code the Camel
game in C#.

Here is the link for the description of the Camel game:

https://arcade-book.readthedocs.io/en/latest/labs/lab_04_camel/camel.html

Use Visual Studio. It is free to install. You can download it from here: https://visualstudio.microsoft.com/downloads/

Create a new console app project, and call it Camel:

This open with a “Hello World” program. Run the program. It will appear in a separate console window as opposed to
a window in the IDE.

Here’s some code to get started:

1 using System;
2

3 namespace Camel
4 {
5 class Program
6 {
7 static void Main(string[] args)
8 {
9 // Introductory message

10 Console.WriteLine("Welcome to Camel!");
11

12 // Main game loop
13 bool done = false;
14 while (!done)
15 {

(continues on next page)

93

https://arcade-book.readthedocs.io/en/latest/labs/lab_04_camel/camel.html
https://visualstudio.microsoft.com/downloads/

Advanced Game Design

(continued from previous page)

16 // Print commands
17 Console.WriteLine();
18 Console.WriteLine("A. Drink from your canteen.");
19 Console.WriteLine("B. Ahead moderate speed.");
20 Console.WriteLine("C. Ahead full speed.");
21 Console.WriteLine("D. Stop and rest.");
22 Console.WriteLine("E. Status check.");
23 Console.WriteLine("Q. Quit.");
24

25 // Get user command
26 Console.Write("What is your command? ");
27 string userCommand = Console.ReadLine();
28 Console.WriteLine();
29

30 // Process user command
31 if (userCommand == "a")
32 {
33 Console.WriteLine("You drank from the canteen.");
34 } else
35 {
36 Console.WriteLine("Unknown command.");
37 }
38 }
39 }
40 }
41 }

Part of this task is practicing how to quickly search up answers. I’m not going to step through how to code in C#, you
have enough talent to get started on your own.

We will review some of programs together so we can get ideas from each other.

Today, make sure you have created a project that can print “Hello World.” By the time you come to class Thursday,
have a start to the main game loop.

While it is possible to code the program in one function and loop, see if you can use good design and break the parts
into functions.

Feel free to change the theme and add features.

If you change the theme, you must still have a number line you are traveling across, some kind of resource you can run
out of, and “something” that can catch you.

Be ready to present your work on Thursday and your final project on Tuesday.

To turn in, upload GitHub URL to your project.

94 Chapter 12. Camel in C#

CHAPTER

THIRTEEN

ROLL-A-BALL

• Follow the Unity tutorial for roll-a-ball: https://learn.unity.com/project/roll-a-ball

• Put into git, and use this .gitignore file: https://github.com/github/gitignore/blob/main/Unity.gitignore

• Upload to GitHub

• Create a readme and include a screenshot

• Tuesday next week will be workday

– Bring in something mostly working.

– Get help with github

– Get help with readme and image

• Thursday we’ll demo our games

• Turn in github url

95

https://learn.unity.com/project/roll-a-ball
https://github.com/github/gitignore/blob/main/Unity.gitignore

Advanced Game Design

96 Chapter 13. Roll-a-Ball

CHAPTER

FOURTEEN

CUSTOM ROLL-A-BALL

• Start with your prior roll-a-ball assignment.

• Create at least two objects in Blender, and add them as obstacles in your game.

– Obstacles must be at least as complex as the trees we created.

– Obstacles must not be the same trees we created. Do something different.

– Obstacles must have at least two different materials on them.

• Update the collectable to have a custom shape you create in blender.

– Feel free to turn off the rotation if it doesn’t work for your collectable.

• Update your playing field with a custom playing field created in Blender.

• Grading will be a somewhat subjective. Impress me, don’t shoot for the minimum.

• Update the image in your read-me.

• Turn in a Git-Hub link to your project.

97

Advanced Game Design

98 Chapter 14. Custom Roll-a-Ball

CHAPTER

FIFTEEN

TEAM 3D GAME WORK

For this project (and the coming weeks) you’ll break into groups and develop a 3D game. Your goal is to improve this
game, week-by-week.

15.1 Starting the Project

• Start with one of your roll-a-ball games as a working base.

• Invite other team members to that project.

• You must cite any 3d models, textures, sounds that you use from another source.

– Get this started by creating a section in your readme to hold this info.

• Figure out how you want to stay in contact. Exchange info. (E-mail, slack, discord, etc.)

• Brainstorm Ideas

– Theme?

– Color scheme? See Adobe Kuler and create a swatch?

– Create one or more tasks for everyone. Backup tasks are a good idea. See “Some Ideas On Tasks”

15.2 Each Week on Thursday

• Pick goals/tasks for each person to get done that week.

• Enter each task as an issue in GitHub.

• Assign it to the proper person.

• If you notice bugs, enter them in GitHub and assign to the proper person.

99

https://color.adobe.com/create/color-wheel

Advanced Game Design

15.3 Each Week on Tuesday

• Make sure everyone’s work has been merged into GitHub.

• Test your application to make sure it is working.

• Help each other with the tasks and bugs.

15.4 Some Ideas on Tasks

• Object modeling

– Create an interesting playing field

– Add more objects, add more detail to objects

• Materials

– Learn some of the options for materials, and make things shiny, etc.

– Note: Learn these in Unity, not Blender. Blender to Unity material transfer is limited.

• Textures

– Map an image onto an item (UV Mapping) Can do in Blender or Unity.

– Learn to use normal maps

– Create water

• Shaders

– Work with shaders to create better looking materials

• Lighting

– Instead of one generic light, add better lighting. Spot lights, lamps, etc.

• Skybox

– Learn to add a skybox. Warning: Be very careful about how hi-res of an image you download. These can
be huge and blow up your project if you download something too big.

• Sound

– Add sound for pickups

– Add sound when bouncing into objects

– Add sound for movement

• Create level system

– Go to new level if all items are picked up

– Go to new level if player gets to a goal point

• Enemies

– Create items that reset the user to the start if you bump into them

– Create have player lose a life when hitting enemy

– Support ‘game over’ when player loses all lives

– Have enemy move towards player

100 Chapter 15. Team 3D Game Work

Advanced Game Design

– Investigate path finding to have enemy move around objects

• Particles

– Create liquids, smoke, clouds, flames, magic effects

• Shooting

– Be able to shoot things. Enemies, collectables, walls.

• UI

– Create intro/instruction screens

– Allow game restart

– Show lives left

– Add background/panel to UI

– Add dialog system (encounter NPC, have popup dialog)

• Multiplayer

– Add networking

• Animation

– Animate obstacles

– Make moving platforms

– Create switches that trigger events

– Create a 3d car instead of a ball to move around

– Create a 3d walking character rather than a rolling ball. Use Mixamo.

• Player

– Add ability to jump

– Add ability to run

15.5 Important Notes

• Do not add assets into a folder without using Unity. This will lead to merge errors that will lose you a lot of time.

• If working on a challenging item, have a back-up goal. You’ve got to get something done, so you don’t want to
be stuck if things are more complex than expected.

• Everyone must be on the same version of Unity. Do not upgrade your Unity. That will force everyone to upgrade,
or you’ll just end up losing your work.

• Your work must be integrated. For example, if your task is designing a tree, don’t spend all your time making a
beautiful tree in Blender and never get it into the game. Create a cylinder in Blender. Get it into the game. Fancy
it up with some branches. Get that in the game. Add materials. Get that into the game. If something isn’t in the
game, it might as well not exist.

• Commit early. Commit often. If you only commit during one day this week, it won’t look like you’ve done much
work at all.

• The fancy materials and modifiers you use in Blender are not likely to show up in Unity. Keep it simple. Make
sure things work in Unity before sinking a lot of time into them.

15.5. Important Notes 101

https://www.youtube.com/watch?v=0QA2O7juuWQ

Advanced Game Design

15.6 Turn In

Turn in a report.

• Summarize what you finished this week.

• Link to the GitHub project.

• Link to the issue that has the item(s) you worked on.

• Link to your commits. It will look something like: https://github.com/pythonarcade/arcade/commits?author=
pvcraven

• Include an image of what you did, and show it working in the game.

15.7 Grading

I’ll grade the way I evaluated the work of my employees back when I worked IT.

• Integration with the project. When I hit ‘play’ on the game, can I see what you did? If so, that will help give you
a good grade. Don’t make the mistake of adding a model, sound, material, or some other component, but not
make it part of gameplay. If I hit ‘play’ and can’t see your work, then it serves no purpose. When adding items,
start with a simple version. For example, a cube, a beep, code that just prints “hello world” at the right trigger.
You have something working. Go back and add detail. Always keep it in the playable game.

• Frequency of commits. Do you have commits spread across three or more days? This shows ongoing work and
integration with the whole project. In the workplace, I’d expect commits every day. Or hour or two. If you
are doing something that might break the project, do it in a separate branch, then merge. Ask if you’d like help
learning to do this.

• Quantity/complexity of work. Did you do some scripting? Or add a detailed model? Or add a lot of different
low-poly models?

• Documentation. Did you include links to your project and your commits? Did you detail what you did that works
in words? Include screenshots? Did you make it so simple to see what you did, I don’t even need to clone the
game? Did you see me in class and show off your work there? Did you use the issue tracking? As a manager,
I’m looking at that more than diving into your code. You don’t want managers diving into the code, make it easy
for them to track progress.

• Citations.

102 Chapter 15. Team 3D Game Work

https://github.com/pythonarcade/arcade/commits?author=pvcraven
https://github.com/pythonarcade/arcade/commits?author=pvcraven

CHAPTER

SIXTEEN

2D ASSIGNMENT 1

In this assignment, we’ll get started with 2D.

16.1 Requirements

Turn in a report detailing and showing (with screenshots) your completion of:

Table 1: Point Allocation
Item Points
Sprite 1 10
Sprite 2 10
Sprite 3 10
Sprite 4 10
Sprite 5 10
Scene 10
Proper collision 10
Implement scored items 10
Implement next level transition 10
Get something other than player moving 10

Scoring:

• 0 pts - not implemented

• 1-5 pts - buggy

• 6-7 pts - meets minimum requirements. i.e., it works.

• 8-9 pts - Expanded beyond minimum requirements

• 10 pts - Expanded into something that looks like an actual game.

103

Advanced Game Design

16.2 Directions

To get started, clone our project. Get invited as a collaborator.

https://github.com/pvcraven/2022_Class_2D_Project

All item names must include yours so we can identify them.

Then most of what you need to get started is at: 2D Unity Part 1.

The main thing not covered is getting some objects to move via scripts. I’m leaving that up to you to figure out.

16.3 Sample Items to Create

• Outdoors

– Tree

– Rock

– Fence

– Grass

– Flowers

• House or some building

• Icons

– Pencil

– Hand

• Hand-held Items

– Wand

– Sword

– Staff

• Gems

• Coin

• Potion

• Clothing

– Boot

– Shoe

– Shirt

– Vest

– Hat

– Helmet

• Food

– Fruit

∗ Pumpkin

104 Chapter 16. 2D Assignment 1

https://github.com/pvcraven/2022_Class_2D_Project

Advanced Game Design

∗ Apple

∗ Pear

∗ Orange

∗ Grapes

∗ Pineapple

∗ Raspberry

∗ Watermelon

∗ Strawberry

∗ Cherries

∗ Bananas

– Other food

∗ Mushroom

∗ Ice cream code

∗ Donut

∗ Cookie

∗ Pizza

16.3. Sample Items to Create 105

Advanced Game Design

106 Chapter 16. 2D Assignment 1

CHAPTER

SEVENTEEN

2D ASSIGNMENT 2

In this assignment, we’ll get continue work on our 2D level. This assignment will concentrate on:

• 2D Tile maps

• Adding sound effects

17.1 Requirements

Turn in a report detailing and showing (with screenshots) your completion of:

Table 1: Point Allocation
Item Points Scoring
Basic Tiles Created 15 Set of 12 background tiles, as shown in class. Must have some detail

to get full 15 points.
Additional tiles created 15 Create at least three additional tiles. I’d suggest something that

would be an obstruction, or additional background tiles.
Background tile map
layer

20 Background tile layer. Must be reasonably extensive for the full 20
points.

Collision tile map layer 15 Add things to run into as part of tile tile map.
Sound effects added 20 Sound effect for points up, points down, and level up/down.
Unity background music 15 Play some background music. Don’t forget to turn it off when chang-

ing levels.

17.2 Directions

Most of what you need to get started with the tiles can be found in 2D Unity Part 2.

The sound effects and background music should not be too hard. I’m leaving it up to your web-search skills to figure
out how to add that.

107

Advanced Game Design

108 Chapter 17. 2D Assignment 2

CHAPTER

EIGHTEEN

2D ANIMATION ASSIGNMENT

Like earlier assignments, please create a doc that points to the work that you did. Get practice documenting and showing
off your work, as this is going to be very important for getting promoted in your career.

Table 1: Point Allocation
Item Points Scoring
Create animated time-
based sprite frames
1

10 Create at least 8 frames of a time-based sprite. This can be from the
fire or water sprite created in class during 2D Animation. To turn in,
take a screenshot and show the resulting images.

Create animated time-
based sprite in Unity
1

5 Get the animated sprite from above working in Unity. Slow down
the keyframes so it doesn’t run full speed.

Create animated time-
based sprite frames
2

10 Create at least 8 frames of a time-based sprite.

Create animated time-
based sprite in Unity
2

5 Get the sprite working.

Create animated time-
based character sprite
frames

10 Create “idle” and “walking” animations in Aseprite. Show the im-
ages created.

Create animated time-
based character sprite in
Unity

10 Idle animation must play. When character moves, the walking ani-
mation must start. When character is done walking, go back to idle.
Select left/right based on direction character is moving.

Create animated time-
based NPC sprite frames

10 Create one more moving animation, this time for an NPC. Must have
two different animations. (Idle/walk)

Create animated time-
based NPC sprite in
Unity

10 Get both animations and transition to work for NPC character.

Expand level 10 Take the level that you have, and make it bigger. I suggest showing
the original level, and the expansion. You’ll probably want at least
two screens worth of additional layout.

Total 100

109

Advanced Game Design

110 Chapter 18. 2D Animation Assignment

CHAPTER

NINETEEN

2D FINAL ASSIGNMENT

Like earlier assignments, please create a doc that points to the work that you did. Get practice documenting and showing
off your work, as this is going to be very important for getting promoted in your career.

Table 1: Point Allocation
Item Points Scoring
Add the ability to fire
projectiles

20 Some kind of projectile needs to be fired.

Create a destroyable tar-
get

15 Have an item that is destroyed when hit by the projectile

Create something that
glows

15 At least one item needs a glow effect

Create a particle system 20 For full points, the particle effect needs to be triggered. For exam-
ple, an explosion when an item is hit. Stand-alone particle systems
that just emit are worth about 16 points. Scoring will be somewhat
dependent on amount of particle features used.

Create an ‘attack’ sys-
tem.

20 ?

Demo your level. 10 Be in class for our last class, and show off your level.
Total 100

111

	Camel Code Review
	Camel Version 1
	Camel Version 2
	Camel Version 3

	Blender to Unity
	Set Up Unity
	Create 3D Items in Blender
	Materials in Blender
	Import in Unity
	More Practice
	Weekend Assignment

	Mixamo to Unity
	Setup
	Download the Character from Mixamo
	Get the Character
	Get the Animations

	Add Mixamo Characters and Animations to Project
	Get Character to Move
	Add Character Controller
	Add Character Script

	Animate
	Add Armature Rigs
	Add Idle Animation
	Add Speed Parameter
	Uncheck Root Motion

	References

	Texture Objects
	Texture Types
	Texture Websites
	Very Simple Textures
	UV Mapping

	2D Unity Part 1
	Create sample sprites and add to Unity
	Change sprite settings
	Make sprites solid
	Add in score
	Add in scene change
	Summary

	2D Unity Part 2
	Create tile set
	Import and split tile set
	Create tile map and palette

	2D Animation
	Create a time-based animation in Aseprite
	Import a sprite sheet in Unity
	Create animated character frames in Aseprite
	Get character working with idle animation in Unity

	2D Shooting
	Make a sprites in Aseprite
	Detect mouse down events
	Create a bullet
	Create targets
	Add a bullet script to destroy
	Calculate angles

	Adding a Bloom Effect
	Step 1 - Add the post processing package to your project
	Step 2 - Enable HDR for the project
	Step 3 - Add a post-processing layer to the camera
	Step 4 - Create a post processing profile
	Step 5 - Create a post processing volume
	Step 6 - Make one thing glow

	2D Particle System
	Create a white sprite particle
	Add a particle system
	Make the particles sprites
	Scale the particles
	Color the particles
	Amount of particles
	Particle trails

	Make things blow up when hit

	2D Attacks
	Add time-limited trigger for attacks
	Do damage

	Camel in C#
	Roll-a-Ball
	Custom Roll-a-Ball
	Team 3D Game Work
	Starting the Project
	Each Week on Thursday
	Each Week on Tuesday
	Some Ideas on Tasks
	Important Notes
	Turn In
	Grading

	2D Assignment 1
	Requirements
	Directions
	Sample Items to Create

	2D Assignment 2
	Requirements
	Directions

	2D Animation Assignment
	2D Final Assignment

