

Advanced Game Design

Resources:

	Camel Code Review

	Blender to Unity

	Mixamo to Unity

	Texture Objects

	2D Unity Part 1

	2D Unity Part 2

	2D Animation

	2D Shooting

	Adding a Bloom Effect

	2D Particle System

	2D Attacks

Assignments:

	Camel in C#

	Roll-a-Ball

	Custom Roll-a-Ball

	Team 3D Game Work

	2D Assignment 1

	2D Assignment 2

	2D Animation Assignment

	2D Final Assignment

Camel Code Review

Here are examples of the “Camel” game. Our goal here is to do code reviews
on this code.

Before the code review, think about:

	First, list what are the goals of the code review.

	Look for common mistakes. Keep a to-do list.

	Can a person drink more water than is in the canteen?

	Do we mis-calculate how far back the people are?

	Can the chasing people skip past the person and miss seeing them?

	Can we both win and lose the game at the same time? Or otherwise get conflicting messages?

	Quantify effectiveness of your code review. (Bugs found, changes made, etc.)

	Code reviews often include work on unit-tests. We aren’t doing that here but
keep it in mind.

	Code reviews should be less than 400 lines and 60 minutes.

Camel Version 1

 1using System;
 2
 3namespace CamelGame
 4{
 5	class Program
 6	{
 7		private static void Choices()
 8		{
 9			Console.WriteLine(" ");
 10			Console.WriteLine("A. Drink from your canteen.");
 11			Console.WriteLine("B. Ahead moderate speed.");
 12			Console.WriteLine("C. Ahead full speed.");
 13			Console.WriteLine("D. Stop and rest.");
 14			Console.WriteLine("E. Status check.");
 15			Console.WriteLine("Q. Quit.");
 16			Console.WriteLine(" ");
 17		}
 18		private static void DistanceTraveled(int camelMovement)
 19		{
 20			Console.WriteLine(" ");
 21			Console.WriteLine("You traveled " + camelMovement + " miles.");
 22		}
 23		private static void ChoiceA(ref int thirst, ref int drinks)
 24		{
 25			if (drinks > 0)
 26			{
 27				drinks -= 1;
 28				thirst = 0;
 29			}
 30			else Console.WriteLine("You are out of water.");
 31		}
 32		private static void ChoiceB(ref int milesTraveled, ref int thirst, ref int camelTiredness, ref int drinks, ref int nativeDistance, Random random)
 33		{
 34			int camelMovement = random.Next(5, 12);
 35			int nativeMovement = random.Next(7, 14);
 36			milesTraveled += camelMovement;
 37			thirst += 1;
 38			camelTiredness += 1;
 39			nativeDistance += nativeMovement;
 40			int oasisFound = random.Next(1, 20);
 41			if (oasisFound == 1)
 42			{
 43				Oasis(out thirst, out camelTiredness, out drinks);
 44			}
 45			DistanceTraveled(camelMovement);
 46		}
 47		private static void ChoiceC(ref int milesTraveled, ref int thirst, ref int camelTiredness, ref int drinks, ref int nativeDistance, Random random)
 48		{
 49			int camelMovement = random.Next(10, 20);
 50			int nativeMovement = random.Next(7, 14);
 51			int addTiredness = random.Next(1, 3);
 52			milesTraveled += camelMovement;
 53			thirst += 1;
 54			camelTiredness += addTiredness;
 55			nativeDistance += nativeMovement;
 56			int oasisFound = random.Next(1, 20);
 57			if (oasisFound == 1)
 58			{
 59				Oasis(out thirst, out camelTiredness, out drinks);
 60			}
 61			DistanceTraveled(camelMovement);
 62		}
 63		private static void ChoiceD(ref int nativeDistance, ref int camelTiredness, Random random)
 64		{
 65			Console.WriteLine("The Camel is happy");
 66			int nativeMovement = random.Next(7, 14);
 67			nativeDistance += nativeMovement;
 68			camelTiredness = 0;
 69		}
 70		private static void ChoiceE(int milesTraveled, int drinks, int nativeDistance)
 71		{
 72			Console.WriteLine("Miles traveled: " + milesTraveled);
 73			Console.WriteLine("Drinks in canteen: " + drinks);
 74			Console.WriteLine("The natives are " + (milesTraveled - nativeDistance) + " miles behind you.");
 75		}
 76		private static void Oasis(out int thirst, out int camelTiredness, out int drinks)
 77		{
 78			Console.WriteLine("You found an oasis!");
 79			Console.WriteLine("The camel is rested and your thirst and canteen are replenished.");
 80			thirst = 0;
 81			drinks = 3;
 82			camelTiredness = 0;
 83		}
 84		static void Main(string[] args)
 85		{
 86			int milesTraveled = 0;
 87			int thirst = 0;
 88			int camelTiredness = 0;
 89			int drinks = 3;
 90			int nativeDistance = -20;
 91			string choice;
 92			string playAgain;
 93			bool done = false;
 94			Random random = new Random();
 95
 96			Console.WriteLine("Welcome to Camel!");
 97			Console.WriteLine("You have stolen a camel to make your way across the great Mobi desert.");
 98			Console.WriteLine("The natives want their camel back and are chasing you down! Survive your desert trek and out run the natives.");
 99
100			while (!done)
101			{
102				Choices();
103				Console.Write("Enter Choice: ");
104				choice = Console.ReadLine();
105				if (string.Equals("Q", choice.ToUpper()))
106				{
107					done = true;
108				}
109
110				else if (string.Equals("A", choice.ToUpper()))
111				{
112					ChoiceA(ref thirst, ref drinks);
113				}
114
115				else if (string.Equals("B", choice.ToUpper()))
116				{
117					ChoiceB(ref milesTraveled, ref thirst, ref camelTiredness, ref drinks, ref nativeDistance, random);
118				}
119
120				else if (string.Equals("C", choice.ToUpper()))
121				{
122					ChoiceC(ref milesTraveled, ref thirst, ref camelTiredness, ref drinks, ref nativeDistance, random);
123				}
124
125				else if (string.Equals("D", choice.ToUpper()))
126				{
127					ChoiceD(ref nativeDistance, ref camelTiredness, random);
128				}
129
130				else if (string.Equals("E", choice.ToUpper()))
131				{
132					ChoiceE(milesTraveled, drinks, nativeDistance);
133				}
134
135				if (thirst > 6)
136				{
137					Console.WriteLine("You died of thirst.");
138					done = true;
139				}
140
141				else if (thirst > 4)
142				{
143					Console.WriteLine("You are thirsty.");
144				}
145
146				if (camelTiredness > 8 & !done)
147				{
148					Console.WriteLine("Your camel is dead.");
149					done = true;
150				}
151
152				else if (camelTiredness > 5)
153				{
154					Console.WriteLine("Your camel is getting tired.");
155				}
156
157				if (milesTraveled - nativeDistance <= 0 & !done)
158				{
159					Console.WriteLine("The natives caught you!");
160					done = true;
161				}
162
163				else if (milesTraveled - nativeDistance <= 15)
164				{
165					Console.WriteLine("The natives are getting close!");
166				}
167
168				if (milesTraveled >= 200 & !done)
169				{
170					Console.WriteLine("You escaped the natives!");
171					done = true;
172				}
173
174				if (done)
175				{
176					Console.Write("Play Again? (Y/N) ");
177					playAgain = Console.ReadLine();
178					if (string.Equals("Y", playAgain.ToUpper()))
179					{
180						done = false;
181					}
182					else if (string.Equals("N", playAgain.ToUpper()))
183					{
184						Console.WriteLine("Thanks for playing!");
185					}
186				}
187			}
188		}
189	}
190}

Camel Version 2

 1using System;
 2using System.Collections;
 3using System.Collections.Generic;
 4
 5namespace Camel
 6{
 7 class Program
 8 {
 9 // Initialize variables for use throughout the entire program
 10 static int playerPosition;
 11 static int hadesPosition;
 12 static int gameLength;
 13 static bool done;
 14 static int energy;
 15 static int maxEnergy = 20;
 16 static int drachmas;
 17 static int maxShops = 4;
 18 static int hadesMovement;
 19 static int turnCounter;
 20 static int positionDifference;
 21 static string distanceStatement;
 22 static string energyStatement;
 23 static int[] shops;
 24 static int movementModifier;
 25 static int hadesMovementModifier;
 26 static Dictionary<string, int> shopItems;
 27 static int speedBoostTurns;
 28 static int maxSpeedBoost = 5;
 29 static int roadBlockTurns;
 30 static int maxRoadBlock = 5;
 31 static bool purchaseMade;
 32 static bool moved;
 33 static bool exitShop;
 34 static string lineBreak = "---";
 35
 36 static void Main(string[] args)
 37 {
 38 // --- SETUP FUNCTIONS FOR GAME USE ---
 39 void InitializeGame()
 40 {
 41 // Initialize game variables and general setup.
 42 hadesPosition = 0;
 43 // Set player position relative to Hades at the beginning of the game.
 44 playerPosition = SetPlayerPosition(hadesPosition);
 45 // Randomize the length that the player must travel.
 46 SetGameLength();
 47 // Get our list of shop locations.
 48 shops = DisperseShops();
 49 energy = maxEnergy;
 50 turnCounter = 0;
 51 // This is used to keep our game running until the player wins or is caught by Hades.
 52 done = false;
 53 hadesMovementModifier = 0;
 54 movementModifier = 0;
 55 shopItems = new Dictionary<string, int>();
 56 InitializeShop();
 57
 58 string gameStartTutorial;
 59 gameStartTutorial = "You are in ancient Greece and have just completed an undercover recon mission for Zeus. Hades has discovered " +
 60 "what you have done and is now chasing you while you make your way back to Olympus! Get back to Olympus before Hades makes you pay " +
 61 "the price!";
 62
 63 Console.WriteLine(gameStartTutorial);
 64 Console.WriteLine(lineBreak);
 65 }
 66
 67 // This function will set the Game's length every time it is started up.
 68 int SetGameLength()
 69 {
 70 gameLength = RandomNumber(45, 60);
 71 return gameLength;
 72 }
 73
 74 // Function for generating random numbers within the game.
 75 int RandomNumber(int min, int max)
 76 {
 77 Random random = new Random();
 78 return random.Next(min, max);
 79 }
 80
 81 // This function sets the players initial starting position with respect to the enemy's position.
 82 int SetPlayerPosition(int hadesLocation)
 83 {
 84 int playerLocation;
 85 playerLocation = hadesLocation + RandomNumber(1, 6);
 86 return playerLocation;
 87 }
 88
 89 int SetHadesPosition()
 90 {
 91 hadesMovement = RandomNumber(2, 5);
 92 if (hadesMovement - hadesMovementModifier < 0)
 93 {
 94 hadesMovement = 0;
 95 }
 96 else
 97 {
 98 hadesMovement = hadesMovement - hadesMovementModifier;
 99 }
100 hadesPosition += hadesMovement;
101 return hadesPosition;
102 }
103
104 int[] DisperseShops()
105 {
106 int previousShop;
107 int interval;
108 int[] shopLocations = new int[maxShops];
109
110 previousShop = 0;
111
112 for (int i = 0; i < maxShops; i++)
113 {
114 interval = RandomNumber(4, 10);
115 if (previousShop + 4 < gameLength && (previousShop + interval) < gameLength)
116 {
117 shopLocations[i] = previousShop + interval;
118 previousShop = shopLocations[i];
119 }
120 }
121
122 return shopLocations;
123 }
124
125 string GetEnergyStatement(int energy)
126 {
127 if (energy <= 3)
128 {
129 return "You are exhausted...";
130 }
131 else if (energy > 3 && energy <= 10)
132 {
133 return "You are starting to get tired...";
134 }
135 else if (energy > 10 && energy <= 15)
136 {
137 return "You still feel moderately energetic.";
138 }
139 else
140 {
141 return "You are pulsing with energy!";
142 }
143 }
144
145 void CheckForAncientRuins()
146 {
147 int random;
148 int drachmasGained;
149 random = RandomNumber(0, 26);
150 drachmasGained = RandomNumber(5, 15);
151 if (random == 12)
152 {
153 Console.WriteLine("You have stumbled upon some ancient ruins. You have found " + drachmasGained + " drachmas and your energy has been restored!");
154 drachmas += drachmasGained;
155 energy = maxEnergy;
156 }
157 }
158
159 void Purchase(string itemName, int price)
160 {
161 string shopStatement = "";
162
163 if (itemName.Equals("Energy Drink") && drachmas >= price)
164 {
165 energy = maxEnergy;
166 shopStatement = "Your energy has been replenished!";
167 shopItems.Remove("Energy Drink");
168 drachmas -= price;
169 purchaseMade = true;
170 }
171 else if (itemName.Equals("Speed Boost") && drachmas >= price)
172 {
173 movementModifier = RandomNumber(2, 4);
174 speedBoostTurns = maxSpeedBoost;
175
176 shopStatement = "Your movement speed has been boosted by " + movementModifier +
177 " for " + speedBoostTurns + " turns!";
178 shopItems.Remove("Speed Boost");
179 drachmas -= price;
180 purchaseMade = true;
181 }
182 else if (itemName.Equals("Road Block") && drachmas >= price)
183 {
184 hadesMovementModifier = RandomNumber(1, 3);
185 roadBlockTurns = maxRoadBlock;
186 shopStatement = "You have injured Hades and have restricted his movement by " +
187 hadesMovementModifier + " for " + roadBlockTurns + " turns!";
188 shopItems.Remove("Road Block");
189 drachmas -= price;
190 purchaseMade = true;
191 }
192 else if (drachmas < price)
193 {
194 Console.WriteLine("You cannot afford that!");
195 purchaseMade = false;
196 }
197 else
198 {
199 Console.WriteLine("You have decided to leave.");
200 exitShop = true;
201 }
202 if (purchaseMade)
203 {
204 Console.WriteLine("You have purchased one " + itemName);
205 Console.WriteLine(shopStatement);
206 }
207 }
208
209 void OpenShop()
210 {
211 string shopStatement = "You have stumbled upon a traveling merchant!";
212 int i = 1;
213 Console.WriteLine(shopStatement);
214 Dictionary<int, string> itemList = new Dictionary<int, string>();
215
216 foreach (KeyValuePair<string, int> item in shopItems)
217 {
218 string displayItem = i + ". " + item.Key + " -------- " + item.Value;
219 Console.WriteLine(displayItem);
220 itemList.Add(i, item.Key);
221 i += 1;
222 }
223
224 string leave = i + ". Leave";
225 itemList.Add(i, "Leave");
226 string playerDrachmas = "Your current held drachmas: " + drachmas;
227 string buy = "Would you like to make a purchase?";
228 Console.WriteLine(leave);
229 Console.WriteLine(playerDrachmas);
230 Console.WriteLine(buy);
231
232 purchaseMade = false;
233 exitShop = false;
234
235 while (!purchaseMade && !exitShop)
236 {
237 string userInput = Console.ReadLine();
238
239 try
240 {
241 string itemName;
242 int price;
243
244 itemList.TryGetValue(Convert.ToInt32(userInput), out itemName);
245 shopItems.TryGetValue(itemName, out price);
246 Purchase(itemName, price);
247 exitShop = true;
248 }
249 catch
250 {
251 Console.WriteLine("Please enter a valid number.");
252 }
253 }
254 }
255
256 void InitializeShop()
257 {
258 shopItems.Add("Energy Drink", 10);
259 shopItems.Add("Speed Boost", 25);
260 shopItems.Add("Road Block", 15);
261 }
262
263 void IncrementItemDuration()
264 {
265 if (speedBoostTurns > 0)
266 {
267 speedBoostTurns -= 1;
268 }
269 if (roadBlockTurns > 0)
270 {
271 roadBlockTurns -= 1;
272 }
273 }
274
275 void GetUserDecision()
276 {
277 string slow;
278 string medium;
279 string fast;
280 string rest;
281 string input;
282 string status;
283 string quit;
284 bool decided;
285 int drachmasGained = 0;
286
287 decided = false;
288
289 slow = "1. Slow and Steady...";
290 medium = "2. Keep a moderate pace.";
291 fast = "3. Full steam ahead!!!";
292 rest = "4. Stop and take a rest...";
293 status = "5. Journey Status.";
294 quit = "6. Quit Game.";
295
296 if (positionDifference >= 10)
297 {
298 Console.WriteLine("Hades is very far away...");
299 }
300 else if (positionDifference >= 6)
301 {
302 Console.WriteLine("Hades is getting closer.");
303 }
304 else
305 {
306 Console.WriteLine("Hades is right on your tail!!!");
307 }
308 Console.WriteLine();
309 Console.WriteLine(slow + "\n" + medium + "\n" + fast + "\n" + rest + "\n" + status + "\n" + quit);
310 Console.WriteLine("What would you like to do?");
311
312 while (!decided)
313 {
314 // Get user input and set up if statements to evaluate user input.
315 input = Console.ReadLine();
316
317 int distanceTraveled;
318 int energyUsed;
319
320 // If player has decided to take it slow...
321 if (input.Equals("1"))
322 {
323 distanceTraveled = (RandomNumber(1, 3) + movementModifier);
324 energyUsed = RandomNumber(-3, -1);
325 playerPosition += distanceTraveled;
326 distanceStatement = "You have decided to play it safe, and have traveled " + distanceTraveled + " miles. ";
327 energyStatement = GetEnergyStatement(energy);
328 drachmasGained = RandomNumber(1, 3);
329
330 // Make sure we are not surpassing the maximum energy cap.
331 if (energy - energyUsed < maxEnergy - energyUsed)
332 {
333 energy -= energyUsed;
334 }
335 else
336 {
337 energy = maxEnergy;
338 }
339
340 IncrementItemDuration();
341
342 decided = true;
343 }
344 // If player has decided on medium travel speed...
345 else if (input.Equals("2") && energy >= 4)
346 {
347 distanceTraveled = (RandomNumber(3, 5) + movementModifier);
348 energyUsed = RandomNumber(2, 4);
349 playerPosition += distanceTraveled;
350 energy -= energyUsed;
351 distanceStatement = "You have decided to move at a steady pace, and have traveled " + distanceTraveled + " miles. ";
352 energyStatement = GetEnergyStatement(energy);
353 drachmasGained = RandomNumber(2, 4);
354 drachmas += drachmasGained;
355 IncrementItemDuration();
356
357 decided = true;
358 }
359 // If player has decided to go full speed...
360 else if (input.Equals("3") && energy >= 8)
361 {
362 distanceTraveled = (RandomNumber(4, 8) + movementModifier);
363 energyUsed = RandomNumber(6, 8);
364 drachmasGained =
365 playerPosition += distanceTraveled;
366 energy -= energyUsed;
367 distanceStatement = "You have decided to travel at full speed, and have traveled " + distanceTraveled + " miles. ";
368 energyStatement = GetEnergyStatement(energy);
369 drachmasGained = RandomNumber(3, 6);
370 IncrementItemDuration();
371
372 decided = true;
373 }
374 // If player has decided to rest...
375 else if (input.Equals("4"))
376 {
377 energyUsed = RandomNumber(-10, -6);
378 energy -= energyUsed;
379 distanceStatement = "You have decided to take a rest and recover your energy. ";
380 energyStatement = GetEnergyStatement(energy);
381 IncrementItemDuration();
382
383 decided = true;
384 }
385 else if (input.Equals("5"))
386 {
387 Console.WriteLine("----------------- STATUS REPORT -----------------\nEnergy: " + GetEnergyStatement(energy) +
388 "\nDrachmas: " + drachmas + "\nHades is " + positionDifference + " miles behind you.");
389 decided = false;
390 }
391 else if (input.Equals("6"))
392 {
393 bool decisionMade = false;
394 Console.WriteLine("Are you sure you would like to quit?\n1. Yes\n2. No");
395 string choice;
396
397 while (!decisionMade)
398 {
399 choice = Console.ReadLine();
400
401 if (choice.Equals("1"))
402 {
403 Console.WriteLine("You have exited the game.");
404 done = true;
405 decided = true;
406 decisionMade = true;
407 }
408 else if (choice.Equals("2"))
409 {
410 decisionMade = true;
411 }
412 else
413 {
414 Console.WriteLine("Please enter either 1 or 2.");
415 }
416 }
417 }
418 // If player has entered anything that is not above or does not have enough energy...
419 else
420 {
421 if ((input.Equals("2") && energy < 4) || (input.Equals("3") && energy < 8))
422 {
423 Console.WriteLine("You do not have enough energy for that!");
424 }
425 else
426 {
427 Console.WriteLine("That is not an option, please enter a number between 1 and 4.");
428 }
429 // Keep loop running.
430 decided = false;
431 }
432 }
433
434 // Update Hades position and print out the game status.
435 if (!done)
436 {
437 SetHadesPosition();
438 Console.WriteLine(distanceStatement + energyStatement);
439 Console.WriteLine("While traveling you found " + drachmasGained + " drachmas!");
440 drachmas += drachmasGained;
441 turnCounter += 1;
442 }
443
444 for (int i = 0; i < shops.Length; i++)
445 {
446 if (playerPosition == shops[i])
447 {
448 OpenShop();
449 }
450 }
451 }
452 // ---
453
454 // --MAIN GAME SETUP--
455 InitializeGame();
456
457 // Run this loop while the game is not over.
458 while (!done)
459 {
460 string input;
461 bool playAgainDecision;
462 if (playerPosition < gameLength)
463 {
464 if (playerPosition <= hadesPosition)
465 {
466 Console.WriteLine("You were caught! Game Over!");
467 playAgainDecision = false;
468 Console.WriteLine("Would you like to try again?\n1. Yes\n2. No");
469
470 while (!playAgainDecision)
471 {
472 input = Console.ReadLine();
473
474 if (input.Equals("1"))
475 {
476 InitializeGame();
477 playAgainDecision = true;
478 done = false;
479 }
480 else if (input.Equals("2"))
481 {
482 playAgainDecision = true;
483 done = true;
484 }
485 else
486 {
487 Console.WriteLine("Invalid Input. Please enter either 1 or 2.");
488 playAgainDecision = false;
489 }
490 }
491 }
492 else
493 {
494 CheckForAncientRuins();
495 GetUserDecision();
496 positionDifference = playerPosition - hadesPosition;
497 Console.WriteLine(lineBreak);
498 }
499 }
500 else
501 {
502 Console.WriteLine("You win!");
503 playAgainDecision = false;
504 while (!playAgainDecision)
505 {
506 input = Console.ReadLine();
507
508 if (input.Equals("1"))
509 {
510 InitializeGame();
511 playAgainDecision = true;
512 done = false;
513 }
514 else if (input.Equals("2"))
515 {
516 playAgainDecision = true;
517 done = true;
518 }
519 else
520 {
521 Console.WriteLine("Invalid Input. Please enter either 1 or 2.");
522 playAgainDecision = false;
523 }
524 }
525 }
526 }
527 }
528 // ---
529 }
530}

Camel Version 3

 1using System;
 2using System.Collections.Generic;
 3using System.Linq;
 4using System.Text;
 5using System.Threading.Tasks;
 6
 7namespace CamelGame
 8{
 9 class Program
 10 {
 11 private static readonly int MILES_TO_HIDEOUT = 200;
 12
 13 private static bool done;
 14 private static bool win;
 15 private static bool quit;
 16 private static int milesTraveled;
 17 private static int fillupsLeft;
 18 private static int policeMilesTraveled;
 19 private static int gasTankLeft;
 20 private static char userInput;
 21 private static bool validInput;
 22 private static readonly Random rand = new Random();
 23
 24 static bool FoundOasis(int findingNumber)
 25 {
 26 if (findingNumber == 15)
 27 {
 28 return true;
 29 }
 30 else
 31 {
 32 return false;
 33 }
 34 }
 35
 36 static void Main()
 37 {
 38 bool playAgain = true;
 39
 40 while (playAgain)
 41 {
 42 Console.WriteLine("Welcome to Bank Heist!\n" +
 43 "You have stolen one-million dollars from a bank and must escape to your secret hide out.\n" +
 44 "The police are hot on your tail and will stop at nothing to catch you!\n" +
 45 "Out run the cops and escape to your hideout to keep your freedom.\n");
 46
 47 done = false;
 48 win = false;
 49 validInput = true;
 50
 51 milesTraveled = 0;
 52 gasTankLeft = 0;
 53 fillupsLeft = 3;
 54
 55 policeMilesTraveled = -20;
 56
 57
 58 while (!done)
 59 {
 60 Console.WriteLine();
 61 Console.WriteLine("A. Ahead moderate speed.\n" +
 62 "B. Ahead full speed.\n" +
 63 "C. Stop to fill up the gas tank.\n" +
 64 "D. Status check.\n" +
 65 "Q. Quit.\n");
 66
 67 Console.Write("What is your choice? ");
 68 userInput = Console.ReadKey().KeyChar;
 69 Console.WriteLine("\n");
 70
 71 validInput = true;
 72
 73 // The user chooses to quit the game.
 74 if (char.ToUpper(userInput) == 'Q')
 75 {
 76 QuitGame();
 77 }
 78 // The user chooses to check their status.
 79 else if (char.ToUpper(userInput) == 'D')
 80 {
 81 CheckStatus();
 82 }
 83 // The user chooses to hide for the night.
 84 else if (char.ToUpper(userInput) == 'C')
 85 {
 86 StopToFillGas();
 87 }
 88 // The user chooses to move ahead full speed.
 89 else if (char.ToUpper(userInput) == 'B')
 90 {
 91 MoveAhead(false);
 92 }
 93 // The user chooses to move ahead slowly.
 94 else if (char.ToUpper(userInput) == 'A')
 95 {
 96 MoveAhead(true);
 97 }
 98 // The user input was invalid.
 99 else
100 {
101 Console.WriteLine("You input was invalid.");
102 validInput = false;
103 }
104
105 CheckIfCaught();
106
107 }
108
109 if (win)
110 {
111 Console.WriteLine("\nCongratulations! You've escaped the police and won the game!");
112 }
113 else if (!win && !quit)
114 {
115 Console.WriteLine("\nYou have lost the game.");
116 }
117 else
118 {
119 Console.WriteLine("\nThanks for playing.");
120 }
121
122 Console.Write("Would you like to play again? (Y/N) ");
123 userInput = Console.ReadKey().KeyChar;
124 Console.WriteLine("\n");
125
126 if (char.ToUpper(userInput) == 'Y')
127 {
128 playAgain = true;
129 }
130 else if (char.ToUpper(userInput) == 'N')
131 {
132 playAgain = false;
133 }
134 else
135 {
136 Console.WriteLine("You have entered an invalid value and the game will now close.\n");
137 playAgain = false;
138 }
139 }
140
141 Console.WriteLine("Thank you for playing. Press any key to exit.");
142 _ = Console.ReadKey();
143 }
144
145 private static void CheckIfCaught()
146 {
147 if (char.ToUpper(userInput) != 'Q' && validInput)
148 {
149 if (gasTankLeft > 8 && !done)
150 {
151 Console.WriteLine("Your car ran out of gas and you got caught.");
152 done = true;
153 }
154 else if (gasTankLeft > 5)
155 {
156 Console.WriteLine("Your gas is getting low.");
157 }
158
159 if ((milesTraveled - policeMilesTraveled) <= 0 && !done)
160 {
161 Console.WriteLine("The police caught you.");
162 done = true;
163 }
164 else if ((milesTraveled - policeMilesTraveled) <= 15)
165 {
166 Console.WriteLine("The police are getting close!");
167 }
168
169 if (milesTraveled >= MILES_TO_HIDEOUT && !done)
170 {
171 done = true;
172 win = true;
173 }
174 }
175 }
176
177 static void QuitGame()
178 {
179 done = true;
180 quit = true;
181 }
182
183 static void CheckStatus()
184 {
185 Console.WriteLine("Miles traveled: " + milesTraveled);
186 Console.WriteLine("Gas fill-ups remaining: " + fillupsLeft);
187 Console.WriteLine("The police are " + (milesTraveled - policeMilesTraveled) +
188 " miles behind you.");
189 }
190
191 static void StopToFillGas()
192 {
193 gasTankLeft = 0;
194 fillupsLeft -= 1;
195 policeMilesTraveled += rand.Next(7, 15);
196
197 if (policeMilesTraveled < milesTraveled)
198 {
199 Console.WriteLine("Your gas tank is full.");
200 }
201 }
202
203 static void MoveAhead(bool slow)
204 {
205 int currentMilesTraveled;
206 if (!slow)
207 {
208 currentMilesTraveled = rand.Next(10, 21);
209 gasTankLeft += rand.Next(1, 4);
210 }
211 else
212 {
213 currentMilesTraveled = rand.Next(5, 13);
214 gasTankLeft++;
215 }
216 milesTraveled += currentMilesTraveled;
217 policeMilesTraveled += rand.Next(7, 15);
218 Console.WriteLine("You traveled " + currentMilesTraveled + " miles.");
219
220 int findingAHideout = rand.Next(19);
221
222 if (FoundOasis(findingAHideout) && milesTraveled < MILES_TO_HIDEOUT)
223 {
224 Console.WriteLine("You found an abandoned hideout!");
225 fillupsLeft = 3;
226 gasTankLeft = 0;
227 }
228 }
229
230 }
231}

Blender to Unity

Our goal is to learn to create simple, low-poly 3D items in Blender. Color them. Then import to Unity.

[image: ../../_images/trees_in_unity.png]

Note

Don’t forget to Blender scale interface up before showing this tutorial so people can see.

Set Up Unity

	Create a new 3D project in Unity

	Create a 20x20 dark green plain for the ground

Create 3D Items in Blender

	Open Blender

	Notice window and hierarchy, like Unity

	Navigation

	Click-left to select

	Middle click to rotate around focused object (Unity is alt-left click)

	Number pad . to change focus (Unity is F key)

	Shift-Middle button pans (unity is just left click if you are in the ‘hand tool’ mode)

	Show axis thing in upper right to select side views. Also show num pad

	Delete everything. We don’t want to import a camera or light.

	We will be creating one file for each object.

	Select item in hierarchy or screen, then delete key

	Add->Mesh->Cylinder

	Lower left, expand out window and select 0.5 meters and 12 verts

	Edit object

	Explain object mode, and edit mode. Use tab to switch

	Show vert, edge, face select tools

	Show alt-click to get circle

	Show ‘E’ to extend.

	Show ‘S’ to scale.

	Show ‘G’ to move.

	Show xyz to select axis

	Make pine tree. Show how to scale to zero.

[image: ../../_images/pine_in_blender.png]

Materials in Blender

	Materials

	Show how to create a material for leaves

	Assign it.

	Can’t see it! Show select material view. And other views.

	Create new material for trunk

	Now need to assign. Show wireframe, face select, hidden faces.

Import in Unity

	Back to unity

	Create folder for blender models

	Open in explorer. Copy path

	Back to blender, save to path

	pine tree

	Unity & blender native files

	Export to FBX

	Back to Unity.

	Drag file into scene

[image: ../../_images/pine_in_unity.png]

More Practice

	Repeat, but create a tree using an icosphere. Add apples.

	Show Ctrl-L for selecting linked

	Shift-D to duplicate

	Brand new blender file, do not combine

	Watch scale

[image: ../../_images/apple_tree.png]

Weekend Assignment

	Out of class, work through Chapter 1 and Chapter 2.
You can skip the last object modifiers item in Chapter 2.

	https://cgcookie.com/course/basics-intro-to-blender-3-0

Mixamo to Unity

This covers how to get a 3D character into your scene, using Mixamo [https://www.mixamo.com/] character assets and animations.

[image: ../../_images/example.png]
Mixamo has a few character assets (not its primary purpose) and a lot of animations for characters (its primary
purpose).

Setup

Our goal here is to create a landscape for our character to walk around. We’ll add a plane and have a few cubes
to help with a sense of distance and perspective.

	Create a new Unity 3D project

	Add a plane, name it “Ground”

	Scale x/z to 10x10

	Create a grass material color

	Add material to plane

	Create a cube

	Create a different material and add to cube

	Add rigid body physics to cube. Test.

	Duplicate a few cubes

	Position the camera

	Don’t forget to save

[image: ../../_images/setup.png]

Download the Character from Mixamo

	Go to Mixamo.com [https://www.mixamo.com/]

	Log in. You’ll log in with an Adobe id or some SSO choice they have.

Get the Character

Once there, go to the “Character” tab and find a character you like. I’m using Claire.

[image: ../../_images/get_character.png]

	Select your character

	Hit “Download”

	You want “FBX for Unity”. You do not want the generic FBX it defaults to.

	Make sure T-Pose is selected

	Download

Get the Animations

Now we need our idle and walking animations.

[image: ../../_images/get_idle.png]

	Switch to “Animations”

	Search on “Idle”

	Select an idle animation. If you don’t see it play with your character hit “refresh” on the browser.
You can adjust the animation. For example, widen out the hands so they don’t clip through the characer.

	Click “Download”

	Select FBX for Unity. (Again, the default FBX doesn’t work.)

	Select “Without Skin” because we already downloaded that.

Next, repeat for a walking animation. You’ll get an extra check-box
for in-place which you must check. This will keep the animation from
moving the character forward, while the code thinks the character
is in the same location.

Warning

You must select “In-Place” checkbox for any moving animation

Add Mixamo Characters and Animations to Project

Now we want to get the character to appear in our project.

	Create a folder for your character. In this case, I used “Claire”.

	Create subfolders for “Materials” and “Textures”

[image: ../../_images/claire_folder.png]

	Drag the character and two animations from your ‘downloads’ to the folder you created.

	Drag the character from the assets to your scene. It will be white, as no textures ore materials have been applied yet.

[image: ../../_images/white_character.png]

	Next click on your character in Assets.

	Select Materials in the Inspector panel.

	Click “Extract Textures” and put them in the Textures folder we created.

	Click “Extract Materials” and put them in the Materials folder we created.

[image: ../../_images/extract_materials.png]

	If you get a message like this, just go ahead and fix.

[image: ../../_images/fix.png]

	Now your character should look good.

[image: ../../_images/t-pose.png]

Get Character to Move

Now we need to get the character to move around.
We are going to use a character controller. It is more complex than rigid body physics, but offers more control.

Add Character Controller

	Select your character.

	Select “Add Component” in the inspector.

	Add a character controller.

	The character controller has a ‘capsule’ for hitbox calculations. Adjust the size and positioning of this so it
goes around your character.

[image: ../../_images/character_controller.png]

Add Character Script

	Make the camera a ‘child’ of the player and position behind the player.

	Add this character script:

 1using System.Collections;
 2using System.Collections.Generic;
 3using UnityEngine;
 4
 5public class CharacterScript : MonoBehaviour
 6{
 7 [SerializeField] Transform playerCamera = null;
 8 [SerializeField] float mouseSensitivity = 3.5f;
 9 [SerializeField] float walkSpeed = 6.0f;
10 [SerializeField] float gravity = -13.0f;
11 [SerializeField] [Range(0.0f, 0.5f)] float moveSmoothTime = 0.3f;
12 [SerializeField] [Range(0.0f, 0.5f)] float mouseSmoothTime = 0.03f;
13
14 [SerializeField] bool lockCursor = true;
15
16 float cameraPitch = 0.0f;
17 float velocityY = 0.0f;
18 CharacterController controller = null;
19
20 Vector2 currentDir = Vector2.zero;
21 Vector2 currentDirVelocity = Vector2.zero;
22
23 Vector2 currentMouseDelta = Vector2.zero;
24 Vector2 currentMouseDeltaVelocity = Vector2.zero;
25
26 void Start()
27 {
28 controller = GetComponent<CharacterController>();
29 if (lockCursor)
30 {
31 Cursor.lockState = CursorLockMode.Locked;
32 Cursor.visible = false;
33 }
34 }
35
36 void Update()
37 {
38 UpdateMouseLook();
39 UpdateMovement();
40 }
41
42 void UpdateMouseLook()
43 {
44 Vector2 targetMouseDelta = new Vector2(Input.GetAxis("Mouse X"), Input.GetAxis("Mouse Y"));
45
46 currentMouseDelta = Vector2.SmoothDamp(currentMouseDelta, targetMouseDelta, ref currentMouseDeltaVelocity, mouseSmoothTime);
47
48 cameraPitch -= currentMouseDelta.y * mouseSensitivity;
49 cameraPitch = Mathf.Clamp(cameraPitch, -90.0f, 90.0f);
50
51 playerCamera.localEulerAngles = Vector3.right * cameraPitch;
52 transform.Rotate(Vector3.up * currentMouseDelta.x * mouseSensitivity);
53 }
54
55 void UpdateMovement()
56 {
57 Vector2 targetDir = new Vector2(Input.GetAxisRaw("Horizontal"), Input.GetAxisRaw("Vertical"));
58 targetDir.Normalize();
59
60 currentDir = Vector2.SmoothDamp(currentDir, targetDir, ref currentDirVelocity, moveSmoothTime);
61
62 if (controller.isGrounded)
63 velocityY = 0.0f;
64
65 velocityY += gravity * Time.deltaTime;
66
67 Vector3 velocity = (transform.forward * currentDir.y + transform.right * currentDir.x) * walkSpeed + Vector3.up * velocityY;
68
69 controller.Move(velocity * Time.deltaTime);
70
71 }
72}

	While the character does not animate yet, it should be able to move with mouse and WASD keys.

Animate

Add Armature Rigs

	Select your character in the assets folder.

	In the “Inspector” tab, select “Rig”.

	Select “Humanoid”

	Select “Create From This Model”.

	Select “Apply”

[image: ../../_images/character_rig.png]

	Select the “Idle” animation.

	In the “Inspector” tab, select “Rig”.

	Select “Humanoid”

	Select “Copy From Other Avatar”.

	Double-click on “Source” and select the avatar you just created

	Select “Apply”

	Repeat for the “Walk” animation.

	There may be warnings. That’s ok.

Add Idle Animation

	Click on your character folder in assets, and add an Animator Controller.

[image: ../../_images/add_animator_controller.png]

	Double click on the animator controller to edit it. Then drag the idle animation to the controller.

	Drag the animator controller to your player object. Run. The player should now display the idle animation.

Add Speed Parameter

We will need to transition from idle to walking based on speed. We need to update our character controller to
spit this out. Here’s our updates:

 1using System.Collections;
 2using System.Collections.Generic;
 3using UnityEngine;
 4
 5public class CharacterScript : MonoBehaviour
 6{
 7 [SerializeField] Transform playerCamera = null;
 8 [SerializeField] float mouseSensitivity = 3.5f;
 9 [SerializeField] float walkSpeed = 6.0f;
10 [SerializeField] float gravity = -13.0f;
11 [SerializeField] [Range(0.0f, 0.5f)] float moveSmoothTime = 0.3f;
12 [SerializeField] [Range(0.0f, 0.5f)] float mouseSmoothTime = 0.03f;
13 Animator _animator;
14
15 [SerializeField] bool lockCursor = true;
16
17 float cameraPitch = 0.0f;
18 float velocityY = 0.0f;
19 Vector3 velocity = Vector3.zero;
20
21 CharacterController controller = null;
22
23 Vector2 currentDir = Vector2.zero;
24 Vector2 currentDirVelocity = Vector2.zero;
25
26 Vector2 currentMouseDelta = Vector2.zero;
27 Vector2 currentMouseDeltaVelocity = Vector2.zero;
28
29 void Start()
30 {
31 _animator = GetComponentInChildren<Animator>();
32 controller = GetComponent<CharacterController>();
33 if (lockCursor)
34 {
35 Cursor.lockState = CursorLockMode.Locked;
36 Cursor.visible = false;
37 }
38 }
39
40 void Update()
41 {
42 UpdateMouseLook();
43 UpdateMovement();
44 float speedPercent = velocity.magnitude / walkSpeed;
45 _animator.SetFloat("speed", speedPercent);
46 }
47
48 void UpdateMouseLook()
49 {
50 Vector2 targetMouseDelta = new Vector2(Input.GetAxis("Mouse X"), Input.GetAxis("Mouse Y"));
51
52 currentMouseDelta = Vector2.SmoothDamp(currentMouseDelta, targetMouseDelta, ref currentMouseDeltaVelocity, mouseSmoothTime);
53
54 cameraPitch -= currentMouseDelta.y * mouseSensitivity;
55 cameraPitch = Mathf.Clamp(cameraPitch, -90.0f, 90.0f);
56
57 playerCamera.localEulerAngles = Vector3.right * cameraPitch;
58 transform.Rotate(Vector3.up * currentMouseDelta.x * mouseSensitivity);
59 }
60
61 void UpdateMovement()
62 {
63 Vector2 targetDir = new Vector2(Input.GetAxisRaw("Horizontal"), Input.GetAxisRaw("Vertical"));
64 targetDir.Normalize();
65
66 currentDir = Vector2.SmoothDamp(currentDir, targetDir, ref currentDirVelocity, moveSmoothTime);
67
68 if (controller.isGrounded)
69 velocityY = 0.0f;
70
71 velocityY += gravity * Time.deltaTime;
72
73 velocity = (transform.forward * currentDir.y + transform.right * currentDir.x) * walkSpeed + Vector3.up * velocityY;
74
75 controller.Move(velocity * Time.deltaTime);
76
77 }
78}

Now in the Animator, we should be able to add speed:

[image: ../../_images/add_speed.png]
Then we can add in our “walk” animation. Add transitions, and make it based on speed. Greater than 0.3, we animate.
Less than 0.3, we idle.

[image: ../../_images/transition.png]
Right now, the animations will only run once. Double-click between both
animations and make sure that “Loop Time” box is checked for both animations.

[image: ../../_images/add_loop.png]
Also, the animations won’t transition until they are done.
Flip between both animations and uncheck “Has Exit Time.”

[image: ../../_images/has_exit_time.png]

Uncheck Root Motion

Depending on your animation, the animation can move the character.
Typically it works best if it is just an animation.
Select your character, and in the “Animator” section, uncheck
root motion:

[image: ../../_images/root_motion.png]

References

	Acacia Developer. First Person Controller [https://www.youtube.com/watch?v=PmIPqGqp8UY]. Sep 10, 2020

	Acacia Developer. Unity FPS Controller code [https://github.com/Acacia-Developer/Unity-FPS-Controller/blob/master/Assets/Script/PlayerController.cs]. Sep 10, 2020

	Niklas Bergstrand. Adding walk and run animation in Unity [https://bergstrand-niklas.medium.com/adding-walk-and-run-animation-in-unity-408f87d37ef2]. May 19, 2021

Texture Objects

We want to put an image on an object, rather than just have a solid color.

Texture Types

There are several types of textures.

	Diffuse/Albedo map - Color for object. The is the basics of what you need.
Although the image can look “flat.” Think bricks. Shouldn’t look flat, but will
be with just a diffuse map.

	Bump maps - Create illusion of depth via grayscale data. Shade of gray is height.
These are grayscale images.

	Normal maps - Better than bump maps, uses RGB for more info. This can give us
x, y, and z. Allows for angle and more realistic looks. These maps tend
to look blue.

	Displacement/Height map - This map is used to actually changes surface they are on.

	Specular/Metallic - Maps out what part of the image is shiny.

Here are some samples from Texturise [http://www.texturise.club/], their
“Tilable Wood Planks Texture [http://www.texturise.club/2013/08/tileable-wood-planks-maps.html]”.

[image: ../../_images/tileable_wood_planks_texture.jpg]

Texture

[image: ../../_images/tileable_wood_planks_texture_NORMAL.jpg]

Normal

[image: ../../_images/tileable_wood_planks_texture_SPECULAR.jpg]

Specular

[image: ../../_images/tileable_wood_planks_texture_DISP.jpg]

Displacement

[image: ../../_images/image1.png]

Albido/Texture image/Color

[image: ../../_images/image2.png]

Normal

[image: ../../_images/image3.png]

Displacement

[image: ../../_images/image4.png]

Specular

[image: ../../_images/image5.png]

Everything

Here they are, in action on Blender.

Texture Websites

Where can you get textures?

	Texturise [http://www.texturise.club/]

	Poly Haven [https://polyhaven.com/textures]

	Poliigon [https://www.poliigon.com/textures] (Paid)

Very Simple Textures

	Create a new project.

	Add a 10x10 plane.

	Create a folder called “Textures”

	Toss the images there.

	Create a material in that folder.

	Toss onto the plane.

	Put images into texture

	Toss ‘texture’ to Albedo.

	Toss ‘specular’ to ‘metalic’. Change to ‘Albedo Alpha’ and turn smoothness
down to about 0.1. You can use this for occlusion instead.

	Toss ‘normal’ to ‘normal map’

	Toss ‘displacement’ to ‘Height map’

[image: ../../_images/creating_material.png]

	You can change the ‘tiling’ to control how many times it repeats on the surface.

UV Mapping

Take some road textures:

[image: ../../_images/Tileable_cracked_asphalt_road_texture.jpg]

Road texture

[image: ../../_images/Tileable_cracked_asphalt_road_texture_NORMAL.jpg]

Road texture normal

[image: ../../_images/Tileable_cracked_asphalt_road_texture_SPECULAR.jpg]

Road texture specular

Create a road texture. I used specular for occlusion. Apply to a new cube.

[image: ../../_images/road_cube.png]
Looks ok. But what if we scale the cube?

[image: ../../_images/stretched_road_cube.png]
We need to change the geometry, and not scale the item. Then do a “UV Unwrap”.

Go to blender. Create a cube. Go into edit mode and not object mode. Change
the cube dimensions.

[image: ../../_images/blender_cube.png]
Change the bottom view to UV. Do a smart UV unwrap:

[image: ../../_images/blender_uv.png]
Delete camera and light. Save into your Assets folder.
Toss cube onto scene. Apply material. See how it maps?

Change mapping. Save. See results.

[image: ../../_images/blender_uv2.png]
[image: ../../_images/unity_mapped.png]

2D Unity Part 1

Contents

	2D Unity Part 1

	Create sample sprites and add to Unity

	Change sprite settings

	Make sprites solid

	Add in score

	Add in scene change

	Summary

Create sample sprites and add to Unity

	Clone the base Unity project: https://github.com/pvcraven/2022_Class_2D_Project

	Create sprites in Aseprite.

	Use NES palette

	Create a 16x16 character.

[image: ../../_images/paul_character.png]

	Create a 16x32 tree. (Or some other size, keeping in mind 16x16 is the character size.)

[image: ../../_images/paul_tree.png]

	Save to Assets/Sprites/Trees or Assets/Sprites/Characters folder.

	Call your character tree_name or character_name. Obviously, use your first and/or last name, not “name”.

	Export your sprite as a .png in that same folder.

	Open in Unity, confirm the assets are there.

	Do a git add, commit, push and pull to sync with the whole class.

Warning

Be careful of .meta files

Unity adds a .meta file that tags a GUID for each file. If you create
or move a file into a Unity project, let unity create a .meta for it
before check in! This includes the exported .png. Failure to do this
will cause a lot of merge headaches.

Change sprite settings

	Create your own scene. Call it scene_name.

	Drag character onto the screen.

	Way too small. Unity defaults to 100 pixels to one ‘unit’ which is 1 meter.
Change from 100 to 16.

	Great. Now the character is blurry. Change the filtering to ‘point’.

	Character might be blotchy. Turn off compression.

	Should be able to run the scene and see character properly.

	Repeat these steps for your sprites. Don’t do this for other people’s sprites.

	Sync with GitHub.

Make sprites solid

	Add a rigid body 2d. Run the game. Character should now fall.

	Zero out the gravity.

	Add to your character, the
MyCharacterController [https://github.com/pvcraven/2022_Class_2D_Project/blob/main/Assets/Scripts/MyCharacterController.cs]
script that is already in the project under the scripts folder. Examine the script and see how it works.

	Should be able to move character with WSAD. Can adjust speed as needed.

	Add your tree.

	Try running. No collision.

	Add colliders to the character and tree.

	There are circle colliders, capsule colliders, box colliders. Pick the best one.

	You might not want to make a collider around everything for a more 3D look.

[image: ../../_images/tree_collider.png]

	Try running. Character spins!

	Freeze rotation.

[image: ../../_images/freeze_rotation.png]

	Character may or may not appear behind/ahead of the tree properly. You can use sort mode in project settings
to fix:

[image: ../../_images/sort_order.png]

Add in score

Add in a sprite to increase your score.

	You’ll need a collider. Make the collider a “trigger”.

	You’ll need to add in the
ScoreScript [https://github.com/pvcraven/2022_Class_2D_Project/blob/main/Assets/Scripts/ScoreScript.cs].
Examine this script and the character controller together to see how they work.

	Set the points for the score script.

[image: ../../_images/score.png]

	Test.

	You can also have items that make the score go down by putting in a negative number for points.

Add in scene change

Create a sprite that will will cause you to go to the next level.

	You’ll need a collider. Make the collider a “trigger”.

	You’ll need to add in the
SceneChangeScript [https://github.com/pvcraven/2022_Class_2D_Project/blob/main/Assets/Scripts/SceneChangeScript.cs].
Examine this script and the character controller together to see how they work.

	Your scene must appear in File…Build Settings. This is where you determine the order of levels.
As this is a common area, only one person can edit at a time. So let the instructor do this in class.

[image: ../../_images/build_settings.png]

Summary

This should step you through most of what you need to complete
2D Assignment 1. Expand what you’ve learned to create
an explorable level. Don’t worry about the background image yet,
we’ll get to that with tiles.

2D Unity Part 2

Contents

	2D Unity Part 2

	Create tile set

	Import and split tile set

	Create tile map and palette

Create tile set

Tiles will be 16x16. We’ll make multiple tiles at a time. Make a 16*3 and 16*4
image:

[image: ../../_images/tileset.png]
Keep in mind in Aseprite you can:

	Use things like 16*3 in the sprite dimensions, no need to multiply itself.

	You can show the grid overlay

Import and split tile set

When you import the sprite, we need to set our standard three changes, and then
set it to multiple sprites. Then we click on the nearly-hidden sprite editor
button and slice it up.

[image: ../../_images/sprite_editor.png]

	Commit and push.

Create tile map and palette

	Create a new rectangular tile map for your scene.

	Open the tile palette.

	Create your own tile palette with your own name

[image: ../../_images/create_tilemap.png]
Create a new palette. Create a new folder for it “Tile Palette”.

[image: ../../_images/create_palette.png]
Select your sprites. Move to palette. Create folder for “Tile images”.

[image: ../../_images/palette_1.png]
Order is weird. Somehow there’s a way to import better I think, but I don’t know it.
To change order, click ‘Edit’ button and then alternate between S and M keys to move
tiles to where you’d like.

[image: ../../_images/palette_1.png]

	Paint with the tiles.

	Change your rendering order so tiles appear below your sprites. Use layers,
or ordering in layers.

[image: ../../_images/paint_tiles.png]

	Show how to do layers

	Show how to do a tile collider 2d

2D Animation

Contents

	2D Animation

	Create a time-based animation in Aseprite

	Import a sprite sheet in Unity

	Create animated character frames in Aseprite

	Get character working with idle animation in Unity

In this tutorial we’ll work on animating sprites.

Create a time-based animation in Aseprite

Create a folder for your animation.

Follow one of these tutorials:

[image: ../../_images/bcf9fd1cc1f9e1c752e4247c76b2d052b109ae22.gifv]

Source: SadFace-RL Fire Animations [https://sadface-rl.tumblr.com/post/180794142504/fire-animation-tutorial]

[image: ../../_images/591e32f9415ce2fccb36a0d1f92b3fd77f13cc81.gifv]

Source: SadFace-RL Water Animations [https://sadface-rl.tumblr.com/post/181133179434/waterfall-animation-tutorial]

Work on using:

	Keyboard shortcuts

	Select tool

	Frames

Export a sprite sheet.

	File->Export Sprite Sheet

	Output->Output file

Import a sprite sheet in Unity

Import a sprite sheet and slice it like we did before.

[image: ../../_images/import_sprite_sheet.png]

	Drag the first image onto your scene.

	Click Window…Animation

	Click your object, you should see an option to create an animation and controller
from it.

	Drag images onto the timeline

	Too fast.

	Drag out the frames, slow it down

[image: ../../_images/c27ec9cf44af7dfdb4f96a787718219af82759ac.jprvx0joe-4mDnN-XqmEEps-bOklrD1zm01bJIqLadA]

Source: SadFace-RL Animation, getting started [https://www.deviantart.com/sadfacerl/art/Animation-Getting-Started-754670906]

Create animated character frames in Aseprite

[image: ../../_images/0ddef1d914eb5cf8685923cebbd4190c9295982d.5A4ky15XzfRqitDMjOxaX0MGbBoYd-UWAg9kcCOLlb4]

Source: SadFace-RL Characters, the human male [https://www.deviantart.com/sadfacerl/art/Tutorial-Characters-Human-Male-757146529]

[image: ../../_images/ce4c9d609378d5ef3c1386df3118ac5e16564d1d.HlW8ziFKqTJ0j78jhxsw-5UAPJP7QXqbIkXmmNfXDCk]

Source: SadFace-RL Animation, the walk cycle [https://www.deviantart.com/sadfacerl/art/Animation-Tutorial-The-Walk-Cycle-750244361]

Get character working with idle animation in Unity

Here’s a video that covers what we are doing:

 2D Shooting

2D Shooting

Contents

	2D Shooting

	Make a sprites in Aseprite

	Detect mouse down events

	Create a bullet

	Create targets

	Add a bullet script to destroy

	Calculate angles

There are three main ways to shoot things in Unity.

	For laser-types of things where you insta-hit, you can use ray-casting.

	You can move sprites and check by distance.

	You can move sprites, and use colliders. This is how we are going to demo things here.

Make a sprites in Aseprite

We need a target and a projectile.

	Make a bullet, laser, heart, whatever projectile you want to shoot.

	Make a target to hit.

	Export, and import into Unity changing the normal three things. (pixels per unit, compression, filter)

[image: ../../_images/target_projectile.png]

Detect mouse down events

Now, we will use the mouse button to shoot. First, we need to detect mouse-down events.

In our Update method on cour controller (not FixedUpdate, doesn’t seem to work well), we can detect a mouse-down
event with Input.GetMouseButtonDown(0). The 0 is for our left mouse button. An implementation might look like:

// Has the mouse been pressed?
if (Input.GetMouseButtonDown(0))
{
 Debug.Log("Mouse down");
}

Code and confirm it works.

Create a bullet

Now we need something to shoot.

	Create a bullet prefab.

	Add a box collider so we can detect collisions. Set the collider to be a trigger, as we don’t want it bumping
into things.

	Add a rigidbody so we can move it via physics.

[image: ../../_images/bullet_prefab.png]
Go to your character controller cand add a public variable for the prefab. Code would look like:

public GameObject bulletPrefab;

Then drag the prefab into the new blank spot in your character.

[image: ../../_images/game_object.png]
Update code to fire the bullet:

// Mouse pressed?
if (Input.GetMouseButtonDown(0))
{
 // Make a bullet
 var bullet = Instantiate(bulletPrefab, body.position, Quaternion.identity);
 // Get the body of the bullet
 var bulletbody = bullet.GetComponent<Rigidbody2D>();
 // Move the bullet to the right
 bulletbody.velocity = new Vector2(4, 0);
}

It would be better code if you make the speed a public variable rather than hard-code it.
And we’ll get to aiming in a bit.

Create targets

Now we need something to shoot.
Create targets. Add a collider. Add a tag for “Destroyable”.

[image: ../../_images/destroyable.png]

Add a bullet script to destroy

This bullet script will destroy itself after moving 8 units, or it will destroy an object
tagged ‘destroyable’.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class BulletScript : MonoBehaviour
{
 Vector3 _origin;
 public float maxDistance = 8.0f;

 // Start is called before the first frame update
 void Start()
 {
 // Get position we started at, so we can see how far the bullet traveled.
 _origin = transform.position;
 }

 public void OnTriggerEnter2D(Collider2D collision)
 {
 Debug.Log("Trigger");
 if (collision.tag == "Destroyable")
 {

 Debug.Log("Destroyable");
 // Destroy item we hit
 Destroy(collision.gameObject);
 // Cause bullet to destroy itself
 // Put this outside the if to get deleted when hitting non-destroyable objects
 Destroy(gameObject);
 }
 }

 // Update is called once per frame
 void Update()
 {
 // How far has the bullet gone?
 float distance = Vector2.Distance(_origin, transform.position);
 // If too far, then remove ourselves from the game.
 if (distance > maxDistance)
 {
 // Cause bullet to destroy itself
 Destroy(gameObject);
 }
 }
}

Calculate angles

Next, if we want to fire in a particular direction, we need to do some math. Here’s the code with comments.

 1 // Get the angle of a vector
 2 public float GetYRotFromVec(Vector2 v1)
 3 {
 4 float _r = Mathf.Atan2(v1.y, v1.x);
 5 float _d = (_r / Mathf.PI) * 180;
 6
 7 return _d;
 8 }
 9
10 void Update()
11 {
12 // Get our axis values
13 horizontal = Input.GetAxisRaw("Horizontal");
14 vertical = Input.GetAxisRaw("Vertical");
15
16 // Has the mouse been pressed?
17 if (Input.GetMouseButtonDown(0))
18 {
19 // -- Fire a bullet
20
21 // Create the bullet
22 var bullet = Instantiate(bulletPrefab, body.position, Quaternion.identity);
23 // Get a reference to the bullet's rigid body
24 var bulletbody = bullet.GetComponent<Rigidbody2D>();
25 // Where is the mouse on the screen?
26 var mousePosition = Input.mousePosition;
27 // Where is the mouse in the world?
28 Vector3 target3 = Camera.main.ScreenToWorldPoint(mousePosition);
29 // Set the z value of this vector 3
30 target3.z = 0;
31 // What is the normalized vector from the player to the mouse?
32 Vector2 direction = (target3 - transform.position).normalized;
33 // What is the angle in degrees?
34 float angle = GetYRotFromVec(direction);
35 // Rotate the bullet
36 bulletbody.rotation = angle;
37 // Give the bullet speed
38 bulletbody.velocity = direction * bulletSpeed;
39 }
40 }

 Adding a Bloom Effect

Adding a Bloom Effect

Contents

	Adding a Bloom Effect

	Step 1 - Add the post processing package to your project

	Step 2 - Enable HDR for the project

	Step 3 - Add a post-processing layer to the camera

	Step 4 - Create a post processing profile

	Step 5 - Create a post processing volume

	Step 6 - Make one thing glow

Step 1 - Add the post processing package to your project

Go to Window -> Package Manager and then install the “Post Processing”
package. This is project-wide so this only needs to happen once for an
entire project.

[image: ../../_images/package_manager.png]

Step 2 - Enable HDR for the project

[image: ../../_images/enable_hdr.png]

Step 3 - Add a post-processing layer to the camera

Select the camera. Add a post process layer component to the camera.

[image: ../../_images/post_process_layer.png]
Select the ‘Bloom’ layer. You may need to create this layer if it does
not yet exist for your project.

[image: ../../_images/post_process_layer_camera.png]

Step 4 - Create a post processing profile

Find/create a directory for post processors.

Create a post processor:

[image: ../../_images/create_pp.png]
Add a bloom effect:

[image: ../../_images/bloom.png]

Step 5 - Create a post processing volume

Go to your project, add an empty. Call it “post-process bloom” or something
like that.

Add a “Process Volume” component to it.

Drag in the post processor to the proper field.

[image: ../../_images/pp_volume.png]
This makes everything glow, fine if you are doing some neon geometry wars
thing. But what about just one thing?

Step 6 - Make one thing glow

Set post-processing intensity to 1. Zero turns it off, we don’t want that.
Above 1 will make everything glow. Don’t want that.

Create a new material called “Glow”.

Give it the following properties:

[image: ../../_images/emission.png]
You have to specify the color, it doesn’t pick it up from the image.

[image: ../../_images/glow.png]

 2D Particle System

2D Particle System

Contents

	2D Particle System

	Create a white sprite particle

	Add a particle system

	Make the particles sprites

	Scale the particles

	Color the particles

	Amount of particles

	Particle trails

	Make things blow up when hit

Let’s make particles! For a YouTube video that covers this, see:
https://www.youtube.com/watch?v=_z68_OoC_0o

Create a white sprite particle

Use Aseprite

Add a particle system

In Unity, select GameObject -> Effects -> Particle System.
You should now have a new particle system in your game throwing off fuzzy dots.

[image: ../../_images/particles_1.png]
The rotation of the default system has the particles flying up.
Take out the -90 rotation on the particle game object and the particles fly towards the camera.
Experiment with it.

Experiment with shape of emitter.

[image: ../../_images/shape.png]
Add gravity to make the particles fly down.

Make the particles sprites

[image: ../../_images/texture.png]

Scale the particles

[image: ../../_images/particle_size.png]

Color the particles

[image: ../../_images/color.png]

Amount of particles

Adjust “rate over time”

Particle trails

Try adding trails, as shown in the video.

Make things blow up when hit

Update your code so that your bullet script will create a “burst” prefab when you
hit an item. You’ll need to have the prefab be created with a script that will destroy
itself over time.

Note

This example just shows the important parts. It doesn’t show the needed “make the bullet
disappear after a while.” We showed that earlier. You’ll need to combine your scripts.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class BurstBulletScript : MonoBehaviour
{
 public GameObject burstPrefab;
 Rigidbody2D body;

 // Start is called before the first frame update
 void Start()
 {
 body = GetComponent<Rigidbody2D>();
 }

 public void OnTriggerEnter2D(Collider2D collision)
 {
 if (collision.tag == "Destroyable")
 {
 // Destroy the item
 Destroy(collision.gameObject);
 // Create the 'burst' effect
 var burst = Instantiate(burstPrefab, body.position, Quaternion.identity);
 }
 }
}

 2D Attacks

2D Attacks

This section based off: https://www.youtube.com/watch?v=1QfxdUpVh5I

Add time-limited trigger for attacks

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class CravenAttackScript : MonoBehaviour
 6 {
 7 // How frequently can we attack?
 8 public float attackTimeLimit = 0.5f;
 9
10 // Countdown timer for attacks
11 private float attackCountdownTimer = 0;
12
13 void Update()
14 {
15 // See if we can attack, via timer.
16 if (attackCountdownTimer <= 0)
17 {
18 // We can attack. See if user hit space bar.
19 if (Input.GetKey(KeyCode.Space))
20 {
21 Debug.Log("Attack");
22 attackCountdownTimer = attackTimeLimit;
23 }
24 }
25 else
26 {
27 // Attack timer needs count-down
28 attackCountdownTimer -= Time.deltaTime;
29 }
30 }
31 }

Do damage

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class CravenAttackScript : MonoBehaviour
 6 {
 7 // How frequently can we attack?
 8 public float attackTimeLimit = 0.5f;
 9
10 // Countdown timer for attacks
11 private float attackCountdownTimer = 0;
12
13 // An empty parented that says where to attack
14 public Transform attackPos;
15 // Radius of attack circle
16 public float attackRange;
17 // What layer will the enemies be on?
18 public LayerMask enemyLayer;
19 // How much damage to deal
20 public int damage = 3;
21
22 void Update()
23 {
24 // See if we can attack, via timer.
25 if (attackCountdownTimer <= 0)
26 {
27 // We can attack. See if user hit space bar.
28 if (Input.GetKey(KeyCode.Space))
29 {
30 Debug.Log("Attack");
31 // Reset the countdown timer
32 attackCountdownTimer = attackTimeLimit;
33 // What enemies did we hit?
34 Collider2D[] enemiesToDamage = Physics2D.OverlapCircleAll(attackPos.position, attackRange, enemyLayer);
35 // Loop through each enemy we hit
36 for(int i=0; i < enemiesToDamage.Length; i++)
37 {
38 // Get the enemy script attached to this object
39 CravenEnemyScript enemyScript = enemiesToDamage[i].GetComponent<CravenEnemyScript>();
40 // If there is an enemy script
41 if (enemyScript)
42 {
43 // Damage
44 enemiesToDamage[i].GetComponent<CravenEnemyScript>().health -= damage;
45 // Print health levels
46 Debug.Log(enemiesToDamage[i].GetComponent<CravenEnemyScript>().health);
47
48 // --- ToDo: destroy enemy here when health <= 0
49 }
50 else
51 {
52 // We hit an enemy, but there's no script attached to it.
53 Debug.Log("Enemy Script not present");
54 }
55 }
56 }
57 }
58 else
59 {
60 // Attack timer needs count-down
61 attackCountdownTimer -= Time.deltaTime;
62 }
63 }
64 // Used to draw a circle when we are selecting the player in the scene view
65 void OnDrawGizmosSelected()
66 {
67 Gizmos.color = Color.red;
68 Gizmos.DrawWireSphere(attackPos.position, attackRange);
69 }
70 }

Note

You’ll need:
* An enemy script
* Turn on gizmos in the scene view
* An enemy layer
* Program a change to the attackPos when user changes direction.

 Camel in C#

Camel in C#

If you had me for CMSC 150, you likely remember the Camel game. Your task for
this assignment is to code the Camel game in C#.

Here is the link for the description of the Camel game:

https://arcade-book.readthedocs.io/en/latest/labs/lab_04_camel/camel.html

Use Visual Studio. It is free to install. You can download it from here:
https://visualstudio.microsoft.com/downloads/

Create a new console app project, and call it Camel:

[image: ../../_images/console_app.png]
This open with a “Hello World” program. Run the program. It will appear
in a separate console window as opposed to a window in the IDE.

Here’s some code to get started:

 1 using System;
 2
 3 namespace Camel
 4 {
 5 class Program
 6 {
 7 static void Main(string[] args)
 8 {
 9 // Introductory message
10 Console.WriteLine("Welcome to Camel!");
11
12 // Main game loop
13 bool done = false;
14 while (!done)
15 {
16 // Print commands
17 Console.WriteLine();
18 Console.WriteLine("A. Drink from your canteen.");
19 Console.WriteLine("B. Ahead moderate speed.");
20 Console.WriteLine("C. Ahead full speed.");
21 Console.WriteLine("D. Stop and rest.");
22 Console.WriteLine("E. Status check.");
23 Console.WriteLine("Q. Quit.");
24
25 // Get user command
26 Console.Write("What is your command? ");
27 string userCommand = Console.ReadLine();
28 Console.WriteLine();
29
30 // Process user command
31 if (userCommand == "a")
32 {
33 Console.WriteLine("You drank from the canteen.");
34 } else
35 {
36 Console.WriteLine("Unknown command.");
37 }
38 }
39 }
40 }
41 }

Part of this task is practicing how to quickly search up answers. I’m not
going to step through how to code in C#, you have enough talent to get started
on your own.

We will review some of programs together so we can get ideas from each other.

Today, make sure you have created a project that can print “Hello World.” By the
time you come to class Thursday, have a start to the main game loop.

While it is possible to code the program in one function and loop, see if you
can use good design and break the parts into functions.

Feel free to change the theme and add features.

If you change the theme, you must still have a number line you are traveling
across, some kind of resource you can run out of, and “something” that can catch
you.

Be ready to present your work on Thursday and your final project on Tuesday.

To turn in, upload GitHub URL to your project.

 Roll-a-Ball

Roll-a-Ball

	Follow the Unity tutorial for roll-a-ball: https://learn.unity.com/project/roll-a-ball

	Put into git, and use this .gitignore file: https://github.com/github/gitignore/blob/main/Unity.gitignore

	Upload to GitHub

	Create a readme and include a screenshot

	Tuesday next week will be workday

	Bring in something mostly working.

	Get help with github

	Get help with readme and image

	Thursday we’ll demo our games

	Turn in github url

 Custom Roll-a-Ball

Custom Roll-a-Ball

	Start with your prior roll-a-ball assignment.

	Create at least two objects in Blender, and add them as obstacles in your game.

	Obstacles must be at least as complex as the trees we created.

	Obstacles must not be the same trees we created. Do something different.

	Obstacles must have at least two different materials on them.

	Update the collectable to have a custom shape you create in blender.

	Feel free to turn off the rotation if it doesn’t work for your collectable.

	Update your playing field with a custom playing field created in Blender.

	Grading will be a somewhat subjective. Impress me, don’t shoot for the minimum.

	Update the image in your read-me.

	Turn in a Git-Hub link to your project.

 Team 3D Game Work

Team 3D Game Work

For this project (and the coming weeks) you’ll break into groups and develop
a 3D game.
Your goal is to improve this game, week-by-week.

Starting the Project

	Start with one of your roll-a-ball games as a working base.

	Invite other team members to that project.

	You must cite any 3d models, textures, sounds that you use from another source.

	Get this started by creating a section in your readme to hold this info.

	Figure out how you want to stay in contact. Exchange info. (E-mail, slack, discord, etc.)

	Brainstorm Ideas

	Theme?

	Color scheme? See Adobe Kuler [https://color.adobe.com/create/color-wheel] and create a swatch?

	Create one or more tasks for everyone. Backup tasks are a good idea. See “Some Ideas On Tasks”

Each Week on Thursday

	Pick goals/tasks for each person to get done that week.

	Enter each task as an issue in GitHub.

	Assign it to the proper person.

	If you notice bugs, enter them in GitHub and assign to the proper person.

Each Week on Tuesday

	Make sure everyone’s work has been merged into GitHub.

	Test your application to make sure it is working.

	Help each other with the tasks and bugs.

Some Ideas on Tasks

	Object modeling

	Create an interesting playing field

	Add more objects, add more detail to objects

	Materials

	Learn some of the options for materials, and make things shiny, etc.

	Note: Learn these in Unity, not Blender. Blender to Unity material transfer is limited.

	Textures

	Map an image onto an item (UV Mapping) Can do in Blender or Unity.

	Learn to use normal maps

	Create water

	Shaders

	Work with shaders to create better looking materials

	Lighting

	Instead of one generic light, add better lighting. Spot lights, lamps, etc.

	Skybox

	Learn to add a skybox. Warning: Be very careful about
how hi-res of an image you download. These can be huge and
blow up your project if you download something too big.

	Sound

	Add sound for pickups

	Add sound when bouncing into objects

	Add sound for movement

	Create level system

	Go to new level if all items are picked up

	Go to new level if player gets to a goal point

	Enemies

	Create items that reset the user to the start if you bump into them

	Create have player lose a life when hitting enemy

	Support ‘game over’ when player loses all lives

	Have enemy move towards player

	Investigate path finding to have enemy move around objects

	Particles

	Create liquids, smoke, clouds, flames, magic effects

	Shooting

	Be able to shoot things. Enemies, collectables, walls.

	UI

	Create intro/instruction screens

	Allow game restart

	Show lives left

	Add background/panel to UI

	Add dialog system (encounter NPC, have popup dialog)

	Multiplayer

	Add networking

	Animation

	Animate obstacles

	Make moving platforms

	Create switches that trigger events

	Create a 3d car instead of a ball to move around

	Create a 3d walking character rather than a rolling ball.
Use Mixamo [https://www.youtube.com/watch?v=0QA2O7juuWQ].

	Player

	Add ability to jump

	Add ability to run

Important Notes

	Do not add assets into a folder without using Unity.
This will lead to merge errors that will lose you a lot of time.

	If working on a challenging item, have a back-up goal.
You’ve got to get something done, so you don’t want to be stuck if things
are more complex than expected.

	Everyone must be on the same version of Unity. Do not upgrade your Unity.
That will force everyone to upgrade, or you’ll just end up losing your work.

	Your work must be integrated. For example, if your task is designing a tree,
don’t spend all your time making a beautiful tree in Blender and never
get it into the game. Create a cylinder in Blender. Get it into the game.
Fancy it up with some branches. Get that in the game. Add materials. Get
that into the game. If something isn’t in the game, it might as well not
exist.

	Commit early. Commit often. If you only commit during one day this week,
it won’t look like you’ve done much work at all.

	The fancy materials and modifiers you use in Blender are not likely
to show up in Unity. Keep it simple. Make sure things work in Unity before
sinking a lot of time into them.

Turn In

Turn in a report.

	Summarize what you finished this week.

	Link to the GitHub project.

	Link to the issue that has the item(s) you worked on.

	Link to your commits. It will look something like:
https://github.com/pythonarcade/arcade/commits?author=pvcraven

	Include an image of what you did, and show it working in the game.

Grading

I’ll grade the way I evaluated the work of my employees back when I worked IT.

	Integration with the project. When I hit ‘play’ on the game, can I see
what you did? If so, that will help give you a good grade.
Don’t make the mistake of adding a model, sound, material, or some
other component, but not make it part of gameplay. If I hit ‘play’ and
can’t see your work, then it serves no purpose. When adding
items, start with a simple version. For example, a cube, a beep, code that just
prints “hello world” at the right trigger.
You have something working. Go back and add detail. Always keep it
in the playable game.

	Frequency of commits. Do you have commits spread across three or
more days? This shows ongoing work and integration with the whole project.
In the workplace, I’d expect commits every day. Or hour or two.
If you are doing something that might break the project, do it in a
separate branch, then merge. Ask if you’d like help learning to do this.

	Quantity/complexity of work. Did you do some scripting? Or add a detailed
model? Or add a lot of different low-poly models?

	Documentation. Did you include links to your project and your commits?
Did you detail what you did that works in words? Include
screenshots? Did you make it so simple to see what you did, I don’t even
need to clone the game? Did you see me in class and show off your work there?
Did you use the issue tracking? As a manager, I’m looking at that more than
diving into your code. You don’t want managers diving into the code, make
it easy for them to track progress.

	Citations.

 2D Assignment 1

2D Assignment 1

In this assignment, we’ll get started with 2D.

Requirements

Turn in a report detailing and showing (with screenshots) your completion of:

Point Allocation

	Item

	Points

	Sprite 1

	10

	Sprite 2

	10

	Sprite 3

	10

	Sprite 4

	10

	Sprite 5

	10

	Scene

	10

	Proper collision

	10

	Implement scored items

	10

	Implement next level transition

	10

	Get something other than player moving

	10

Scoring:

	0 pts - not implemented

	1-5 pts - buggy

	6-7 pts - meets minimum requirements. i.e., it works.

	8-9 pts - Expanded beyond minimum requirements

	10 pts - Expanded into something that looks like an actual game.

Directions

To get started, clone our project. Get invited as a collaborator.

https://github.com/pvcraven/2022_Class_2D_Project

All item names must include yours so we can identify them.

Then most of what you need to get started is at: 2D Unity Part 1.

The main thing not covered is getting some objects to move via
scripts. I’m leaving that up to you to figure out.

Sample Items to Create

	Outdoors

	Tree

	Rock

	Fence

	Grass

	Flowers

	House or some building

	Icons

	Pencil

	Hand

	Hand-held Items

	Wand

	Sword

	Staff

	Gems

	Coin

	Potion

	Clothing

	Boot

	Shoe

	Shirt

	Vest

	Hat

	Helmet

	Food

	Fruit

	Pumpkin

	Apple

	Pear

	Orange

	Grapes

	Pineapple

	Raspberry

	Watermelon

	Strawberry

	Cherries

	Bananas

	Other food

	Mushroom

	Ice cream code

	Donut

	Cookie

	Pizza

 2D Assignment 2

2D Assignment 2

In this assignment, we’ll get continue work on our 2D level. This assignment
will concentrate on:

	2D Tile maps

	Adding sound effects

Requirements

Turn in a report detailing and showing (with screenshots) your completion of:

Point Allocation

	Item

	Points

	Scoring

	Basic Tiles Created

	15

	Set of 12 background tiles, as shown in class. Must have some detail to
get full 15 points.

	Additional tiles created

	15

	Create at least three additional tiles. I’d suggest something that would
be an obstruction, or additional background tiles.

	Background tile map layer

	20

	Background tile layer. Must be reasonably extensive for the full 20
points.

	Collision tile map layer

	15

	Add things to run into as part of tile tile map.

	Sound effects added

	20

	Sound effect for points up, points down, and level up/down.

	Unity background music

	15

	Play some background music. Don’t forget to turn it off when changing
levels.

Directions

Most of what you need to get started with the tiles
can be found in 2D Unity Part 2.

The sound effects and background music should not be too hard. I’m leaving it
up to your web-search skills to figure out how to add that.

 2D Animation Assignment

2D Animation Assignment

Like earlier assignments, please create a doc that points to the work that you did.
Get practice documenting and showing off your work, as this is going to be very important
for getting promoted in your career.

Point Allocation

	Item

	Points

	Scoring

	Create animated time-based sprite frames 1

	10

	Create at least 8 frames of a time-based sprite.
This can be from the fire or water sprite created in class
during 2D Animation. To turn in, take a screenshot and show
the resulting images.

	Create animated time-based sprite in Unity 1

	5

	Get the animated sprite from above working in Unity. Slow down the keyframes so it doesn’t run
full speed.

	Create animated time-based sprite frames 2

	10

	Create at least 8 frames of a time-based sprite.

	Create animated time-based sprite in Unity 2

	5

	Get the sprite working.

	Create animated time-based character sprite frames

	10

	Create “idle” and “walking” animations in Aseprite. Show the images created.

	Create animated time-based character sprite in Unity

	10

	Idle animation must play. When character moves, the walking animation must start. When character
is done walking, go back to idle. Select left/right based on direction character is moving.

	Create animated time-based NPC sprite frames

	10

	Create one more moving animation, this time for an NPC. Must have two different animations. (Idle/walk)

	Create animated time-based NPC sprite in Unity

	10

	Get both animations and transition to work for NPC character.

	Expand level

	10

	Take the level that you have, and make it bigger. I suggest showing the original level, and the
expansion. You’ll probably want at least two screens worth of additional layout.

	Total

	100

	

 2D Final Assignment

2D Final Assignment

Like earlier assignments, please create a doc that points to the work that you did.
Get practice documenting and showing off your work, as this is going to be very important
for getting promoted in your career.

Point Allocation

	Item

	Points

	Scoring

	Add the ability to fire projectiles

	20

	Some kind of projectile needs to be fired.

	Create a destroyable target

	15

	Have an item that is destroyed when hit by the projectile

	Create something that glows

	15

	At least one item needs a glow effect

	Create a particle system

	20

	For full points, the particle effect needs to be
triggered. For example, an explosion when an item is hit.
Stand-alone particle systems that just emit are worth about 16 points.
Scoring will be somewhat dependent on amount of particle features used.

	Create an ‘attack’ system.

	20

	?

	Demo your level.

	10

	Be in class for our last class, and show off your level.

	Total

	100

	

 Index

Index

_images/bloom.png
Overrides

v Bloom

Bloom

v Intensity

Dirtiness

25

On

Off

_images/build_settings.png
Build Settings i@

Scenes In Build

v Scenes/SampleScene 0
v Scenes/CravenScene 1
v Scenes/ScenelLeviBenes 2
Add Open Scenes
Platform

RG]) 7 s
E WebGL Target Platform Windows v
Architecture x86_64 v

N ios . N

_images/blender_uv.png
v Duiv @ N\ Kv + New §E Open

_images/blender_uv2.png
v Dwlv © N WIv[+ New i Open <

_images/character_rig.png
O Inspector

Claire Import Settings

Model
Animation Type

Avatar Definition

Skin Weights
Update reference clips
Optimize Game Objects

Rig Animation Materials

'Humanoid

Create From This Model

Standard (4 Bones)

v Configure...

v

Revert Apply

_images/claire_folder.png
e Project B Console
+-
* Favorites
O, All Materials
O, All Models
O, All Prefabs

(& Assets

» im Claire
m Scenes

B Packages

Assets > Claire

OO 3

Materials (ToNEEE)

Bm Assets/Claire/Textures

_images/bullet_prefab.png
O Inspector 3
bullet_1 (Prefab Asset) o :

Open Prefab

Q Open Prefab for full editing support.

Root in Prefab Asset

” v bullet_1 Static ¥
v Tag Untagged v Layer Default v
L Transform o i
Position X0 Y 0 Z0
Rotation X0 Y 0 Z0
Scale X1 Y1 Z1
g} v Sprite Renderer Q i i
Sprite Islbullet_1 ©
Color I
Flip X Y
Draw Mode Simple v
Mask Interaction None v
Sprite Sort Point Center v
Material ® Sprites-Default ©
Additional Settings

Sorting Layer Default v
Orderin Layer 0
O v Box Collider 2D o i+ i
Edit Collider £
Material None (Physics Material 2D) 0]
Is Trigger v

Used By Effector
Used By Composite

Auto Tiling

Offset X0 YO

Size X 0.16 Y 0.16

Edge Radius 0

Info

& Rigidbody 2D e i i
Body Type Dynamic v
Material None (Physics Material 2D) ®©
Simulated v

Use Auto Mass

bullet_1

——e

AssetBundle None v None

v

_images/character_controller.png
Tag Untagged v Layer Default

Model Open Select Overrides

A Transform e i
Position X 2.705937 Y 0 Z -0.1696634
Rotation X0 Yo zZo0

Scale X1 Y1 Z

8 v Character Controller e
Slope Limit 45

Step Offset 0.3

Skin Width 0.08

Min Move Distance 0.001

Center X 0 v[0.93 Jzo

Radius 0.5

Height 1.84

Add Component

_images/color.png
i sta it

Start Color

Gravity Modifier
Simulation Space
Simulation Speed
Delta Time
Scaling Mode

Local

Scaled
Local

Color

Gradient

Random Between Two Colors
Random Between Two Gradients

Random Color

_images/console_app.png
Create a new project Search for templates (A15S) P~ Language - Platforn - Projecttype -

Recent project templates

Alist of your recently accessed templates will be
displayed here.

WPF App (NET Framework)

Windows Presentation Foundation client application

C# Windows Desktop

_images/create_animation.png
Scene o® Game
Shaded v 2 @ w & v @0 E v

& Animation

2022 CI
2D Garr

Create New Animation

1 1« Assets > Sprites > craven_character

New folder

1 Pictures ~

v | projects
' 80s_shooter
v 12022 Clas
git
v | Assets
2) Create 1 Prefabs

| Robbie_Tile

To begin animating character_craven, create an Animator an

| Scenes
1 Scripts
1 Sounds
~ 1 Sprites

1 Characters
1 Clothing

~ craven_chz

Save as typ

A Hide Folders

nav.xhtml

 Table of Contents

 		
 Advanced Game Design

 		
 Camel Code Review

 		
 Camel Version 1

 		
 Camel Version 2

 		
 Camel Version 3

 		
 Blender to Unity

 		
 Set Up Unity

 		
 Create 3D Items in Blender

 		
 Materials in Blender

 		
 Import in Unity

 		
 More Practice

 		
 Weekend Assignment

 		
 Mixamo to Unity

 		
 Setup

 		
 Download the Character from Mixamo

 		
 Get the Character

 		
 Get the Animations

 		
 Add Mixamo Characters and Animations to Project

 		
 Get Character to Move

 		
 Add Character Controller

 		
 Add Character Script

 		
 Animate

 		
 Add Armature Rigs

 		
 Add Idle Animation

 		
 Add Speed Parameter

 		
 Uncheck Root Motion

 		
 References

 		
 Texture Objects

 		
 Texture Types

 		
 Texture Websites

 		
 Very Simple Textures

 		
 UV Mapping

 		
 2D Unity Part 1

 		
 Create sample sprites and add to Unity

 		
 Change sprite settings

 		
 Make sprites solid

 		
 Add in score

 		
 Add in scene change

 		
 Summary

 		
 2D Unity Part 2

 		
 Create tile set

 		
 Import and split tile set

 		
 Create tile map and palette

 		
 2D Animation

 		
 Create a time-based animation in Aseprite

 		
 Import a sprite sheet in Unity

 		
 Create animated character frames in Aseprite

 		
 Get character working with idle animation in Unity

 		
 2D Shooting

 		
 Make a sprites in Aseprite

 		
 Detect mouse down events

 		
 Create a bullet

 		
 Create targets

 		
 Add a bullet script to destroy

 		
 Calculate angles

 		
 Adding a Bloom Effect

 		
 Step 1 - Add the post processing package to your project

 		
 Step 2 - Enable HDR for the project

 		
 Step 3 - Add a post-processing layer to the camera

 		
 Step 4 - Create a post processing profile

 		
 Step 5 - Create a post processing volume

 		
 Step 6 - Make one thing glow

 		
 2D Particle System

 		
 Create a white sprite particle

 		
 Add a particle system

 		
 Make the particles sprites

 		
 Scale the particles

 		
 Color the particles

 		
 Amount of particles

 		
 Particle trails

 		
 Make things blow up when hit

 		
 2D Attacks

 		
 Add time-limited trigger for attacks

 		
 Do damage

 		
 Camel in C#

 		
 Roll-a-Ball

 		
 Custom Roll-a-Ball

 		
 Team 3D Game Work

 		
 Starting the Project

 		
 Each Week on Thursday

 		
 Each Week on Tuesday

 		
 Some Ideas on Tasks

 		
 Important Notes

 		
 Turn In

 		
 Grading

 		
 2D Assignment 1

 		
 Requirements

 		
 Directions

 		
 Sample Items to Create

 		
 2D Assignment 2

 		
 Requirements

 		
 Directions

 		
 2D Animation Assignment

 		
 2D Final Assignment

_images/create_tilemap.png
‘= Hierarchy 2 i # Scene @ Asset Store = Animator @ Game i @ Inspector a i

v A > 2 0 & - - Gi - A

+ v;/CravenScene* T Shaded o SSIEX m 3| Bligall </ @ v GroundLayer Staticv
€D Main Camera Tag Untagged v Layer Default v
) character_craven
@ tree_craven v A Transform 3
D plus_craven Position X 0 Yo zo
PTIEEECT Rotation X 0 Yo zo

Scale X1 Y1 1

v Tilemap a

Animation Frame Rai 1

Color I

Tile Anchor
X 0.5 Y 0.5 Z0
Orientation XY v
Offset
X0 YO0 Z0
Rotation
—— X0 YO0 Z0
Scale
X1 Y1 Z

v Tilemap Renderer =

. Sort Order Bottom Left v
Mode Chunk v
Detect Chunk Cullin /Auto v
Chunk Culling Bounds

X0 YO Z0
Mask Interaction None v
Material ® Sprites-Default ®
Additional Settings
. = ™ Sorting Layer Default v
Open Tile Palette

Orderin Layer 0

I . Sprites-Default (Material)
T
B Project B Console vl Shader Sprites/Default v

_images/creating_material.png
Scene @ Asset Store > Animator @® Game

Shaded v 20 @ w & v g0 v X ®w~ Gizmos v

0 Inspector

Wood Planks (Material)
Shader Standard

Rendering Mode

Main Maps
©Albedo
ﬁ ©Metallic
Smoothness
Source

ﬁ ©Height Map

ormal Map

©0cclusion
©Detail Mask
Emission
Tiling
Offset

Secondary Maps
©Detail Albedo x2
©ONormal Map

Tiling

Offset

UV Set

Forward Rendering Options

Specular Highlights

Opaque

LB

. 2

Albedo Alpha

X1
X0

X1
X0
uvo

®

Y1
YO0

Y1
YO0

o
Edit...

0.117

0.02

_images/create_palette.png
Tile Palette

| S

Active Tilemap GroundLayer

Create New Palette v Edit
Create New Palette

Name New Palette

Grid Rectangle v

Cell Size Automatic v
X1 Y1 zZo

Sort Mode Default b

Sort Axis X0 Y 0 a1

Cancel Create
Default Brush v
Script B GridBrush

Flood Fill Contiguous Onl) v/

s, e RN

Gizmos

_images/create_pp.png
[e o

Show in Explorer # Script

Open 20 >

ke Shader >

fETame Testing >

Copy Path AltsCtri+C Playables 5

Open Scene Additive Assembly Definition

View in Package Manager Assembly Definition Reference
TextMeshPro >

Import New Asset...

Import Package. > Scene

Export Package. Scene Template

Find References In Scene Scenellemplalelioicend]
Select Dependencies | PostpocesingProfie |
Prefab

Refresh cul=R Prefab Variant

Reimport
Audio Mixer

Reimport All

_images/enable_hdr.png
& Project Settings

Adaptive Performance
Audio
Editor
Graphics
Input Manager
Package Manager
Physics
Physics 2D
Player
Preset Manager
Quality
Scene Template
Script Execution Order
Services
Ads
Analytics
Cloud Build
Cloud Diagnostics
Collaborate
In-App Purchasing
Tags and Layers
TextMesh Pro
Time
Timeline
Version Control
XR Plugin Management

Graphics

Scriptable Render Pipeline Settings
B None (Render Pipeline Asset)

Camera Settings
Transparency Sort Mode
Transparency Sort Axis

Tier Settings

Low (Tier1)
Standard Shader Quality
Reflection Probes Box Projection
Reflection Probes Blending
Detail Normal Map
Enable Semitransparent Shadows
Enable Light Probe Proxy Volume
Cascaded Shadows
Prefer 32-bit shadow maps
Use HDR
HDR Mode

Custom Axis v
X 0 Wl Z0

Open Editor...

Use Defaults

High v
v
v
v
v
v
v
v
FP16 v

_images/example.png

_images/destroyable.png
o

¢ O Inspector
@ v target (1) Static v
v
Tag Destroyable v | Layer Default v
P Transform Q i+ i
Position X 6.54 Y 0.47 Z 0
Rotation X0 Y 0 Z0
Scale X1 Y1 Z1

g} v Sprite Renderer Q i i

_images/emission.png
Rendering Mode
Main Maps

=+ o Albedo
@ Metallic
Smoothness L 0.5
Source Metallic Alpha v

Add a bloom e

@Normal Map
@ Height Map

Overrides
v Bloom

@ Occlusion

) Bloom
| Mask
. v _Intensit
Emission
@Color

Global llluminati B: &¥ --

Tiling X
Offset X (

Secondary Maps
@ Detail Albedo x2

@Normal Map
Tiling X
Offset X
[UAVAST=14 N

Forward Rendering Opt
Specular Highlights v/
Reflections Y
Advanced Options
Render Queue Tre
Enable GPU Instancin
Double Sided Global Il

MaterialPropertyBlo
values

Add Comr

Swatches

_images/extract_materials.png
2 i #Scene owGame > Animator : @ Inspector a i
Shaded v 20 (@ W & v g0 Hy v ¥ W~ Gizmos v A ' Claire Import Settings T

Open
Model Rig Animation| Materials
Material Creation Mode Import via MaterialDescription v
Location Use Embedded Materials he
Textures Extract Textures...
Materials Extract Materials...
a Materials are Zide the imported asset. Material assignments can be remapped below.
Is
On
1_Body_MAT1 ®None (Material) (O]
Girl01_Brows_MAT1 ®None (Material) ®
Girl01_Eyes_MAT1 ®None (Material) (O]
Girl01_Mouth_MAT1 ®None (Material) (O]
Revert Apply
Assets > Claire
claire 4

DD @G

Materials Textures claire claire@ldle claire@Wal...

_images/fix.png
A Material is using the texture as a normal map.
The texture must be marked as a normal map in the import settings.

Assets/Claire/Textures/Girl01_normal.jpg

Fixnow Ignore

_images/freeze_rotation.png
& Rigidbody 2D

Body Type Dynamic
Material None (Physics Mat
Simulated v

Use Auto Mass

[VEES 1

Linear Drag 0

Angular Drag 0.05
Gravity Scale 0

Collision Detection Discrete
Sleeping Mode Start Awake
Interpolate None

Constraints
Freeze Position
Freeze Rotation

Info

_images/get_idle.png
¥ FBX for Unity

Frames per Second

CANCEL

DOWNLOAD SETTINGS

Skin

v ' without skin

Keyframe Reduction

R

_images/glow.png
+

Get Points

_images/game_object.png
v My Shooting Character Controller (Scrif @ 3+ §

Script MyShootingCharacterControlli ©
Score 0

Run Speed 5

Sound None (Audio Source) ®©
Score Increase Sound None (Audio Source) ®©
Score Decrease Sounc None (Audio Source) ®©
Bullet Prefab W bullet_1 ©

_images/get_character.png
DOWNLOAD SETTINGS

-

CANCEL

_images/image2.png

_images/image3.png

_images/has_exit_time.png
O Inspector =]

(]
va
Walking -> Idle
HaS EX|t T|me §
I+ Settings
Wﬂlli" oo 15:00, . [10:00° L [15:00

WUMWWWW\J“W‘WW
_

Conditions

~ speed v Less ¥ 0.3

_images/image1.png

_images/image5.png

_images/import_sprite_sheet.png
scene @l Asset Store > Animator @® Game

ded v 2 (@ w & v POy v

W(~ Gizmos ¥

Sprite Editor*
Sprite Editor v Slice v Trim

Revert Apply m @«

0 Inspector

Fire (Texture 2D) Import Settings

Texture Type Sprite (2D and Ul) v
Texture Shape 2D v
Sprite Mode Multiple A

Packing Tag

Pixels Per Unit 16

Mesh Type Tight hd

Extrude Edges @1
Generate Physics v

Sprite Editor

» Advanced
Wrap Mode Clamp v
Filter Mode Point (no filter) b
Aniso Level \ 4 1

Default CJ ios 5] EH L]

Max Size 2048 9
Resize Algorithm Mitchell 0
Format Automatic A
Compression None 0

Revert Apply

_images/image4.png

_images/paint_tiles.png
ANMalon riame Rat 1

Color S
Tile Anchor X 0.5 Y 0.5 zZ0
Orientation XY v
3 v Tilemap Renderer e+ i
‘. Sort Order Bottom Left v
@ Mode Chunk v
. Detect Chunk Cullin /Auto v
—
Mask Interaction None v
}» Material ® Sprites-Default ®
Additional Settings
Sorting Layer Default v
Orderin Layer -1

. Sprites-Default (Material) (2
Sprites/Default ~ Edit.
Tilemap Add Component

Focus On None v

_images/palette_1.png
Tile Palette i Ax

| R ;R

Active Tilemap GroundLayer v

New Palette v Edit Gizmos

Default Brush v
Flood Fill Contiguous Onl v i
Lock Z Position v v

\ssets > Sprites > tilesets

. grass_dirt_craven

[l grass_dirt_craven
[s] grass_dirt_craven_0
[s] grass_dirt_craven_1
[s] grass_dirt_craven_2
[s] grass_dirt_craven_3
[s] grass_dirt_craven_4.
[s] grass_dirt_craven_5
[s] grass_dirt_craven_6
[s] grass_dirt_craven_7
[s] grass_dirt_craven_8
[s] grass_dirt_craven_9
[#] grass_dirt_craven_10
[#] grass_dirt_craven_11

_images/new_clip.png
= Hierarchy > Animator © Animation
Preview @ K4 14 > Dl M 0

idle y Lol

Add Property

_images/package_manager.png
Window | Help

Panel
aneis > 1l ® & Account v Layers v |

Next Window Ctrl+Tab.

Previous Window Ctrl+Shift+Tab g — —
s M ¢ & Package Manager
Plastic SCM + v Packages: Unity Registry v Sort: Name ¥ v o a
Collaborate Post Processing 3.21 Post Processing

Unity Technologies
A apAE Version 3.21 - February 21, 2022
TextMeshPro) .
General
Rendering
Animation The post-processing stack (v2) comes with
Audio image filters you can apply to your cameras

Sequencing games.

Analysis

i)

Readistrv |Initv

_images/paul_character.png

_images/particle_size.png
» Particle System

Duration
Looping
Prewarm

Start Delay

Start Lifetime
Start Speed

3D Start Size

X 0.2

3D Start Rotation

Z 0.2

<

_images/particles_1.png
5

1

Next [evel

.

*
-

B

Lose Points

a3

_images/pine_in_unity.png

_images/post_process_layer.png
{1 v Audio Listener 0 -

Add Component

[2post] x]

Search

LyPost-process Debug

LyPost-process Volume
New script >

_images/paul_tree.png

_images/pine_in_blender.png

_images/replace_sprite.png
oo Game
n @

ene

ites > craven_character

B

idle

idle_0

0w & v g0y v

¥ ®v Gizmos v

2022 CIS 390 AG

a Al

Lose Points

Next Level

B
B

!l
!l

idle_1 idle_2

»

!l

idle_3

b

idle_4

i @ Inspector

@

-
Tag Untagged

v M Transform
Position
Rotation

Scale

Sprite
Color

Interaction

Sprite Sort Point

Material

¥ Additional Settings
Sorting Layer
Orderin Layer

Script
Score
Run Speed
Sound

6
Body Type
Material

Rigidbody 2D

Simulated
[SECAVI GV ERN

Mass
Linear Drag
Angular Drag
L!.‘ 5 Gravity Scale
Collision Detection
idle_5 idle_6

Sleeping Mode

v character_craven

v [g v Sprite Renderer

v v My Character Controller (Script)

=]
Static v
v Layer Default v
e i i
X -427 Y296 ZO
X0 YO Z0
X1 Y1 Z1
e i i
Islidle_O ®©
I
X Y
Simple v
None v
Center v

® Sprites-Default

Default
0

e
MyCharacterController
0

5
None (Audio Source)

Score Increase Sounc None (Audio Source)
Score Decrease Soun None (Audio Source)

e
Dynamic

None (Physics Material 2D)
M

]
0

0.05

0

Discrete
Start Awake

w O 060 6

“

a

_images/road_cube.png

_images/post_process_layer_camera.png
L5 v Post-process Layer [

Volume blending

Trigger 2. Main Camer ® This
Layer Bloom

Anti-aliasing
Mode No Anti-aliasing

Stop NaN Propagatior v
Directly to Camera Te

_images/pp_volume.png
¥ < O R

+v oA
v & StartScene*
@ character_craven
& Main Camera

@ tree_craven
@ plus_craven
& minus_craven
& arrow_craven
& Grid
& Grid
@ Canvas
@ EventSystem
@ fire_0
@ target
@ target (1)

® @ target (2)
@ target (3)
@ target (4)
& PPVolume

I Project B Console
+

(aw Assets

M Post Processors
I Prefabs

m Robbie_TilePalette
I Scenes

m Scripts

[a@ Sounds

B EanSounds

A Center [Local

Hierarchy » Animator » & i # Scene o®Game
Shaded v |20

4 Assets > Post Processors

7o
e

CravenPP

£

o) & Account v Layers v Layout v
i @ Inspector =]
@ v PPVolume Static v
-
Tag Untagged ¥ Layer Bloom v
AL Transform Q i i
Position X 0.2796(Y -1.038! Z -1.044
Rotation X0 Y 0 Z0
Scale X1 i 1 Z1
t::v v Post-process Volume o i i
Is Global
Weight ® 1
Priority 0
Profile YCravenP ® = New | Clone
Overrides
v m H
None on | Off
Bloom
v Intensity 25
Threshold 1
Soft Knee 0.5
Clamp 65472
Diffusion 7
Anamorphic Ratio 0
Color B
Fast Mode
Dirtiness
Texture None (Texture) (0]
a i Intensity 0
=,
DD | |5 Addeffect..
Add Component

_images/root_motion.png
» v Animator (7 s

Controller % ClaireAnim
Avatar & claireAvatar
Apply Root Motion e
Update Mode Normal
Culling Mode Cull Update Transforms
Clip Count: 2

Curves Pos: 0 Quat: O Euler: 0 Scale: 0 Muscles: 260 Generic: 0 PPtr: 0
Curves Count: 260 Constant: 47 (18.1%) Dense: 142 (54.6%) Stream: 71 (27.3%)

(OMIO)

_images/score.png
O v Box Collider 2D <

Edit Collider £

Material None (Physics Material 2D)
Is Trigger v _
Used By Effector

Used By Composite

Auto Tiling

Offset X0 YO
Size X1 Y1
Edge Radius (]

Info

v Score Script (Script) <——
Script B ScoreScript

Points 1 < —

_images/add_speed.png
a Name

® Base Layer
+ v

_images/apple_tree.png

_images/add_animator_controller.png
e Project B Console
+-
* Favorites
O, All Materials
O, All Models
O, All Prefabs

(& Assets
i Claire
m Scenes

B Packages

Assets > Claire

Materials Textures claire

%2 Assets/Claire/ClaireAnim.controller

LT

claire@idle

claire@Wal...

[
Le

_images/add_loop.png
Model Rig Animation Materials

Import Constraints
Import Animation v

Bake Animations

Resample Curves v

Anim. Compression Keyframe Reduction 0
Rotation Error 0.5

Position Error 0.5

Scale Error 0.5

Rotation error is defined as maximum angle deviation allowed in degrees, for
others it is defined as maximum distance/delta deviation allowed in percents

Animated Custom Properti
Walking

Clips Start End
Idle 0.0 499.0
Lo

Idle e

Length 16.633 30 FPS
Toroa . s0a L onsoo]
Start 0 End 499
Loop Time v ?

Loop Pose

Cycle Offset 0

Additive Reference Pose
Pose Frame 0

_images/blender_cube.png

_images/sprite_editor.png
Sprite Editor*

SpritgjEditor v Slice v Trim
Type

¥ wmm Pixel Size
Offset
Padding
Keep Empty Rects
Pivot
Custom Pivot
Method

Grid By Cell Size

X 16 Y 16
X 0 Y 0
X 0 Y 0
Center

X0 YO0

Delete Existing

Slice

Revert Apply

B X @ Inspector

=

Grass_dirt_craven (Texture 2D) Import Settings @ 3*

Texture Type
Texture Shape

Sprite Mode
Packing Tag
Pixels Per Unit
Mesh Type
Extrude Edges

Sprite (2D and UI)
2D

Multiple
16

Tight
L

Generate Physics Shi v

Advanced

Wrap Mode
Filter Mode
Aniso Level

Default (]

Max Size

Resize Algorithm
Format
Compression

Clamp
Point (no filter)

i0s S|
2048
Mitchell
Automatic
None

Open

Sprite Editor

Revert Apply

_images/stretched_road_cube.png
Tag Untagged v Layer Default A

N Transform e i
Position X -5.811413 Y 1.08 Z 0.3515167
Rotation X 0 Y 0 Z0
Scale X2 i 2 Z 0.5
Cube (Mesh Filter) o i+
Mesh Cube G
‘5 ¥ Mesh Renderer e i+
Materials il
Element O ®Road ®
A
Lighting
Probes

Additional Settings

¥ v Box Collider e i

Edit Collider VY

Is Trigger

Material None (Physic Material) G

Center X 0 Y 0 zZ0

Size X1 Y1 A1

/‘\ Road (Material) (7 s
Shader Standard ~ RECif®

Add Component

_images/shape.png
v Shape

Shape [Circle
Radius 1
Radius Thickness 1
Arc 360
Mode Random
Spread 0
Texture &3 None (Texture 2D)
Position X 0 Y o Z 0
Rotation X 0 Y 0 z 0
Scale X 1 Y 1 2 1
Align To Direction
Randomize Direction 0
Spherize Direction 0
Randomize Position 0

» PN cH

_images/sort_order.png
£ Project Settings

Adaptive Performance
Audio

Editor

Graphics

Input Manager
Package Manager
Physics

Physics 2D

Player

Preset Manager
Quality

Scene Template
Script Execution Order
Services

Graphics

Scriptable Render Pipeline Settings
B None (Render Pipeline Asset)

Camera Settings
Transparency Sort Mode
Transparency Sort Axis
Tier Settings
&

Low (Tier1)

i O
(2 <
(0]
Custom Axis v
xo Y1 z[o |
Open Editor...
g

Use Defaults v

_images/Tileable_cracked_asphalt_road_texture_NORMAL.jpg

_images/texture.png
v Texture Sheet Animation

Mode Sprites
[slburst

Time Mode Lifetime

Frame over Time [

Start Frame 0

Cycles 1

Affected UV Channels Evervthina

_images/Tileable_cracked_asphalt_road_texture_SPECULAR.jpg

_images/tileable_wood_planks_texture.jpg

_images/t-pose.png

_images/Tileable_cracked_asphalt_road_texture.jpg

_images/target_projectile.png
& -0 W °

bullet_1 bullet_1 target target

_images/tileable_wood_planks_texture_DISP.jpg

_images/setup.png
